【Redis场景3】缓存穿透、击穿问题,涉及缓存穿透、缓存击穿问题的原因分析及解决方案,并进行压测实践;每1~2周学习整理redis中的知识点和场景实现,希望有所输入输出,每天进步一点点。
场景问题及原因
缓存穿透:
原因:客户端请求的数据在缓存和数据库中不存在,这样缓存永远不会生效,请求全部打入数据库,造成数据库连接异常。
解决思路:
- 缓存空对象
- 对于不存在的数据也在Redis建立缓存,值为空,并设置一个较短的TTL时间
- 问题:实现简单,维护方便,但短期的数据不一致问题
缓存雪崩:
原因:在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
解决思路:给不同的Key的TTL添加随机值(简单),给缓存业务添加降级限流策略(复杂),给业务添加多级缓存(复杂)
缓存击穿(热点Key):
前提条件:热点Key&在某一时段被高并发访问&缓存重建耗时较长
原因:热点key突然过期,因为重建耗时长,在这段时间内大量请求落到数据库,带来巨大冲击
解决思路:
- 互斥锁
- 给缓存重建过程加锁,确保重建过程只有一个线程执行,其它线程等待
- 问题:线程阻塞,导致性能下降且有死锁风险
- 逻辑过期
- 热点key缓存永不过期,而是设置一个逻辑过期时间,查询到数据时通过对逻辑过期时间判断,来决定是否需要重建缓存;重建缓存也通过互斥锁保证单线程执行,但是重建缓存利用独立线程异步执行,其它线程无需等待,直接查询到的旧数据即可
- 问题:不保证一致性,有额外内存消耗且实现复杂
场景问题实践解决
完整代码地址:https://github.com/xbhog/hm-dianping
分支:20221221-xbhog-cacheBrenkdown
分支:20230110-xbhog-Cache_Penetration_Avalance
缓存穿透:
代码实现:
public Shop queryWithPassThrough(Long id){
//从redis查询商铺信息
String shopInfo = stringRedisTemplate.opsForValue().get(SHOP_CACHE_KEY + id);
//命中缓存,返回店铺信息
if(StrUtil.isNotBlank(shopInfo)){
return JSONUtil.toBean(shopInfo, Shop.class);
}
//redis既没有key的缓存,但查出来信息不为null,则为空字符串
if(shopInfo != null){
return null;
}
//未命中缓存
Shop shop = getById(id);
if(Objects.isNull(shop)){
//将null添加至缓存,过期时间减少
stringRedisTemplate.opsForValue().set(SHOP_CACHE_KEY+id,"",5L, TimeUnit.MINUTES);
return null;
}
//对象转字符串
stringRedisTemplate.opsForValue().set(SHOP_CACHE_KEY+id,JSONUtil.toJsonStr(shop),30L, TimeUnit.MINUTES);
return shop;
}
上述流程图和代码非常清晰,由于缓存雪崩简单实现(复杂实践不会)增加随机TTL值,缓存穿透和缓存雪崩不过多解释。
缓存击穿:
缓存击穿逻辑分析:
首先线程1
在查询缓存时未命中,然后进行查询数据库并重建缓存。注意上述缓存击穿发生的条件,被高并发访问&缓存重建耗时较长;
由于缓存重建耗时较长,在这时间穿插线程2,3,4
进入;那么这些线程都不能从缓存中查询到数据,同一时间去访问数据库,同时的去执行数据库操作代码,对数据库访问压力过大。
互斥锁:
解决方式:加锁;****可以采用**tryLock方法 + double check**
来解决这样的问题
在线程2
执行的时候,由于线程1
加锁在重建缓存,所以线程2
被阻塞,休眠等待线程1
执行完成后查询缓存。由此造成在重建缓存的时候阻塞进程,效率下降且有死锁的风险。
private Shop queryWithMutex(Long id) {
//从redis查询商铺信息
String shopInfo = stringRedisTemplate.opsForValue().get(SHOP_CACHE_KEY + id);
//命中缓存,返回店铺信息
if(StrUtil.isNotBlank(shopInfo)){
return JSONUtil.toBean(shopInfo, Shop.class);
}
//redis既没有key的缓存,但查出来信息不为null,则为空字符串
if(shopInfo != null){
return null;
}
//实现缓存重建
String lockKey = "lock:shop:"+id;
Shop shop = null;
try {
Boolean aBoolean = tryLock(lockKey);
if(!aBoolean){
//加锁失败,休眠
Thread.sleep(50);
//递归等待
return queryWithMutex(id);
}
//获取锁成功应该再次检测redis缓存是否还存在,做doubleCheck,如果存在则无需重建缓存。
synchronized (this){
//从redis查询商铺信息
String shopInfoTwo = stringRedisTemplate.opsForValue().get(SHOP_CACHE_KEY + id);
//命中缓存,返回店铺信息
if(StrUtil.isNotBlank(shopInfoTwo)){
return JSONUtil.toBean(shopInfoTwo, Shop.class);
}
//redis既没有key的缓存,但查出来信息不为null,则为“”
if(shopInfoTwo != null){
return null;
}
//未命中缓存
shop = getById(id);
// 5.不存在,返回错误
if(Objects.isNull(shop)){
//将null添加至缓存,过期时间减少
stringRedisTemplate.opsForValue().set(SHOP_CACHE_KEY+id,"",5L, TimeUnit.MINUTES);
return null;
}
//模拟重建的延时
Thread.sleep(200);
//对象转字符串
stringRedisTemplate.opsForValue().set(SHOP_CACHE_KEY+id,JSONUtil.toJsonStr(shop),30L, TimeUnit.MINUTES);
}
} catch (InterruptedException e) {
throw new RuntimeException(e);
} finally {
unLock(lockKey);
}
return shop;
}
在获取锁失败时,证明已有线程在重建缓存,使当前线程休眠并重试(递归实现)。
代码中需要注意的是synchronized关键字的使用,在获取到锁的时候,在判断下缓存是否存在(失效)double-check
,该关键字锁的是当前对象。在其关键字{}
中是同步处理。
然后进行测试代码,进行压力测试(jmeter)
,首先去除缓存中的值,模拟缓存失效。
设置1000
个线程,多线程执行间隔5s
。
所有的请求都是成功的,其qps
大约在200
,其吞吐量还是比较可观的。然后看下缓存是否成功(只查询一次数据库);
逻辑过期:
思路分析:
当用户开始查询redis
时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value
取出,判断value
中的过期时间是否满足,如果没有过期,则直接返回redis
中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。
封装数据:这里我们采用新建实体类来实现
/**
* @author xbhog
* @describe:
* @date 2023/1/15
*/
@Data
public class RedisData {
private LocalDateTime expireTime;
private Object data;
}
使得过期时间和数据有关联关系,这里的数据类型是Object
,方便后续不同类型的封装。
public Shop queryWithLogicalExpire( Long id ) {
String key = CACHE_SHOP_KEY + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isBlank(json)) {
// 3.存在,直接返回
return null;
}
// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if(expireTime.isAfter(LocalDateTime.now())) {
// 5.1.未过期,直接返回店铺信息
return shop;
}
// 5.2.已过期,需要缓存重建
// 6.缓存重建
// 6.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
boolean isLock = tryLock(lockKey);
// 6.2.判断是否获取锁成功
if (isLock){
exectorPool().execute(() -> {
try {
//重建缓存
this.saveShop2Redis(id, 20L);
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
unLock(lockKey);
}
});
}
// 6.4.返回过期的商铺信息
return shop;
}
当前的执行流程跟互斥锁基本相同,需要注意的是,在获取锁成功后,我们将缓存重建放到线程池中执行,来异步实现。
线程池代码:
/**
* 线程池的创建
* @return
*/
private static ThreadPoolExecutor exectorPool() {
ThreadPoolExecutor executor = new ThreadPoolExecutor(
5,
//根据自己的处理器数量+1
Runtime.getRuntime().availableProcessors()+1,
2L,
TimeUnit.SECONDS,
new LinkedBlockingDeque<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy());
return executor;
}
缓存重建代码:
/**
* 重建缓存
* @param id 重建ID
* @param l 过期时间
*/
public void saveShop2Redis(Long id, long l) {
//查询店铺信息
Shop shop = getById(id);
//封装逻辑过期时间
RedisData redisData = new RedisData();
redisData.setData(shop);
redisData.setExpireTime(LocalDateTime.now().plusSeconds(l));
stringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY+id,JSONUtil.toJsonStr(redisData));
}
测试条件:100
线程,1s
线程间隔时间,缓存失效时间10s
。
测试环境:缓存中存在对应的数据,并且在缓存快失效之前修改数据库中的数据,造成缓存与数据库不一致,通过执行压测,来查看相关线程返回的数据情况。
从上述两张图中可以看到,在前几个线程执行过程中店铺name为102
,当执行时间从19-20
的时候店铺name
发生变化为105
,满足逻辑过期异步执行缓存重建的需求.