本节的内容:

  1. 什么是列表查找;

  2. 顺序查找(线性查找);

  3. 二分查找;

  4. 顺序查找与二分查找比较;

  5. 运行时间;

  6. 增速问题

一:什么是查找

查找:在一些数据元素中,通过一定的方法找出与给定的关键词相同的数据元素的过程。

二:顺序查找(线性查找):从列表中查找指定的元素

定义:从列表的第一个元素开始,顺序进行搜索,直到找到元素或搜索到列表最后一个元素为止。

  • 输入:列表、带查找的元素

  • 输出:元素下标(未找到元素是一般返回None/-1)

  • 内置列表查找函数:index()

 1 #线性查找的代码实现
 2 #enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。
 3 #教程:https://www.runoob.com/python3/python3-func-enumerate.html
 4 def linear_search(li,var):
 5     for index,v enumerate(li):
 6         if v == var:
 7             return index
 8     else:
 9         return None
10 复杂度:范围是列表(n),一个for循环====》O(n) 从头到尾遍历每个元素

 

三:二分查找定义

又叫折半查找,从有序列表(必须为有序)的初始候选区list[o:n]开始,通过对待查找的值与候选区中间值的比较,可以使候选区减少一半。(仅当列表为有序的时候,二分查找才管用)

举例:从下面列表中查找3元素:

数据结构与算法之两种查找方法_数据结构

首先我们需要对候选区做一个了解,这样有助于我们更好的理解,

在上面的列表中我们使1所在的位置为left,9所在的位置为right,这样从left-right就是候选区,

数据结构与算法之两种查找方法_算法_02

数据结构与算法之两种查找方法_算法_03

候选区中间值(mid) =(left-right)// 2;如果我们需要查找的值(val)大于候选区中间值(mid),则左边的值为:left = mid+1 ,right不变,候选区为:【(mid+1),right】;相反:查找的值(val)小于候选区中间值(mid),则left不变,右边值为:right = mid - 1,候选区为【left, ( mid -1)】

数据结构与算法之两种查找方法_数据结构_04

数据结构与算法之两种查找方法_数据结构_05

然后依次进行取值,其中left、mid、right都是指的值的下标;如果最后left>right,则表示该范围没有所需要的值。

代码如下:

 1 def Binary_search(li,val): #li传入的列表,val所需要的值
 2     '''定义值'''
 3     left = 0
 4     right = len(li) - 1
 5     while left <= right: #候选区有值
 6         mid = (right+left) // 2  #候选区中间值
 7         if li[mid] == val:
 8             return mid
 9         elif li[mid] > val: #带查找的值在中间值(mid)的左侧
10             right = mid -1
11         else:  #li[mid] < val 带查找的值在中间值(mid)的右侧
12             left = mid + 1
13     else:
14         return None

四:顺序查找与二分查找比较

我们在使用大O表示法讨论运行时间时,log指的都是log2。使用简单查找法查 找元素时,在最糟情况下需要查看每个元素。

因此,如果列表包含8个数字,你最多需要检查8 个数字。而使用二分查找时,最多需要检查log n个元素。如果列表包含8个元素,你最多需要 检查3个元素,因为log 8 = 3(2^3 = 8)。如果列表包含1024个元素,你最多需要检查10个元素, 因为log 1024 = 10(2^10 =1024)。

五:两者运行时间

选择算法的时候我们本能的选择效率最高的,以最大限度的减少运行时间或者占用空间。

如果列表包含100个数字,顺序查找最多需要猜100次,40亿个数字,则最多需要才40亿次;顺序查找最多需要猜测的次数与列表长度相同==》运行时间线性时间。

二分查找的话最多猜7次,40亿最多猜32(log2^32)次===>运行时间表示为对数时间。

六:增速问题 (算法的运行时间以不同的速度增加 )

随着元素数量的增加,二分查找需要的额外时间并不多, 而顺序查找需要的额外时间却很多。因此,随着列表的增长,二分查找的速度比顺序查找快得多,但如果是无序列表,使用二分查找的话需要进行排序,两者各有优缺点,