http://codeforces.com/problemset/problem/896/C

 

题意:

对于一个随机序列,执行以下操作:

区间赋值

区间加

区间求第k小

区间求k次幂的和

 

对于随机序列,可以使用Old Driver Tree

就是将序列中,连续的相同值域合并为一段

然后暴力操作

 

 

 

#include<set>
#include<vector>
#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

#define N 100001

int n,m,seed,vmax,ret;
int a[N];

struct node
{
    int l,r;
    mutable LL val;
    bool operator < (node p) const
    {
        return l<p.l;
    }
    node(int l=0,int r=0,LL val=0):l(l),r(r),val(val) { }
};

set<node>s;

typedef set<node> :: iterator seti;

vector<pair<LL,int> >par;

void read(int &x)
{
    x=0; char c=getchar();
    while(!isdigit(c))  c=getchar(); 
    while(isdigit(c)) { x=x*10+c-'0'; c=getchar(); }    
}

int rnd()
{
    ret=seed;
    seed=((LL)seed*7+13)%1000000007;
    return ret;
}

void split(int pos)
{
    seti it=s.lower_bound(node(pos,-1,-1));
    if(it==s.end() || it->l>pos)
    {
        --it;
        int l=it->l,r=it->r;
        LL val=it->val;
        s.erase(it);
        s.insert(node(l,pos-1,val));
        s.insert(node(pos,r,val));
    }
}

LL quickpow(LL a,LL x,LL mod)
{
    LL res=1;
    for(;x;x>>=1,a=a*a%mod)
        if(x&1) res=res*a%mod;
    return res;
}

int main()
{
    read(n);
    read(m);
    read(seed);
    read(vmax);
    for(int i=1;i<=n;++i) a[i]=rnd()%vmax+1;
    int r;
    for(int i=1;i<=n;)
    {
        r=i+1;
        while(a[r]==a[i]) r++;
        s.insert(node(i,r-1,(LL)a[i]));
        i=r;
    }
    int op,l,x,y;
    for(int i=1;i<=m;++i)
    {
        op=rnd()%4+1;
        l=rnd()%n+1;
        r=rnd()%n+1;
        if(l>r) swap(l,r);
        if(op==3) x=rnd()%(r-l+1)+1;
        else x=rnd()%vmax+1;
        if(op==4) y=rnd()%vmax+1;
        split(l);
        if(r<n) split(r+1);
        seti itl=s.lower_bound(node(l,-1,-1));
        seti itr=s.upper_bound(node(r,-1,-1));
        if(op==1)
        {
            for(seti it=itl;it!=itr;++it) it->val+=x;
        } 
        else if(op==2)
         {
             s.erase(itl,itr);
             s.insert(node(l,r,x));
        }
        else if(op==3)
        {
            par.clear();
            for(seti it=itl;it!=itr;++it) 
                par.push_back(make_pair(it->val,it->r-it->l+1));
            sort(par.begin(),par.end());
            for(int i=0;i<par.size();++i) 
            {
                x-=par[i].second;
                if(x<=0) 
                {
                    cout<<par[i].first<<'\n';
                    break;
                }
            }
        }
        else 
        {
            LL ans=0;
            for(seti it=itl;it!=itr;++it)
            {
                LL val=quickpow(it->val%y,x,y);
                val=val*(it->r-it->l+1)%y;
                ans=(ans+val)%y;
            }
            cout<<ans<<'\n';
        }
    }
    return 0;
}

 

C. Willem, Chtholly and Seniorious
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

— Willem...

— What's the matter?

— It seems that there's something wrong with Seniorious...

— I'll have a look...

Codeforces Round #449 C. Willem, Chtholly and Seniorious (Old Driver Tree)_ios

Seniorious is made by linking special talismans in particular order.

After over 500 years, the carillon is now in bad condition, so Willem decides to examine it thoroughly.

Seniorious has n pieces of talisman. Willem puts them in a line, the i-th of which is an integer ai.

In order to maintain it, Willem needs to perform m operations.

There are four types of operations:

  • l r x: For each i such that l ≤ i ≤ r, assign ai + x to ai.
  • l r x: For each i such that l ≤ i ≤ r, assign x to ai.
  • l r x: Print the x-th smallest number in the index range [l, r], i.e. the element at the x-th position if all the elements ai such thatl ≤ i ≤ r are taken and sorted into an array of non-decreasing integers. It's guaranteed that 1 ≤ x ≤ r - l + 1.
  • l r x y: Print the sum of the x-th power of ai such that l ≤ i ≤ r, modulo y, i.e. Codeforces Round #449 C. Willem, Chtholly and Seniorious (Old Driver Tree)_ide_02.
Input

The only line contains four integers n, m, seed, vmax (1 ≤ n, m ≤ 105, 0 ≤ seed < 109 + 7, 1 ≤ vmax ≤ 109).

The initial values and operations are generated using following pseudo code:


def rnd():

ret = seed
seed = (seed * 7 + 13) mod 1000000007
return ret

for i = 1 to n:

a[i] = (rnd() mod vmax) + 1

for i = 1 to m:

op = (rnd() mod 4) + 1
l = (rnd() mod n) + 1
r = (rnd() mod n) + 1

if (l > r):
swap(l, r)

if (op == 3):
x = (rnd() mod (r - l + 1)) + 1
else:
x = (rnd() mod vmax) + 1

if (op == 4):
y = (rnd() mod vmax) + 1

Here op is the type of the operation mentioned in the legend.

Output

For each operation of types 3 or 4, output a line containing the answer.

Examples
input
10 10 7 9
output
2
1
0
3
input
10 10 9 9
output
1
1
3
3
Note

In the first example, the initial array is {8, 9, 7, 2, 3, 1, 5, 6, 4, 8}.

The operations are:

  • 2 6 7 9
  • 1 3 10 8
  • 4 4 6 2 4
  • 1 4 5 8
  • 2 1 7 1
  • 4 7 9 4 4
  • 1 2 7 9
  • 4 5 8 1 1
  • 2 5 7 5
  • 4 3 10 8 5
作者:xxy
本文版权归作者所有,转载请用链接,请勿原文转载,Thanks♪(・ω・)ノ。