进阶篇 RocketMQ 消息类型
如果把生活比喻为创作的意境,那么阅读就像阳光 —— 池莉
消息类型
- 普通消息
- 顺序消息
- 延时消息
- 事务消息
- 批量消息
什么是普通消息
就是没有什么特殊要求的消息,生产者会把消息以Round Robin轮询方式发送到不同的Queue分区队列;而消费消息时会从多个Queue上拉取消息,比如日志消息等
什么是顺序消息
顺序消息指的是,严格按照消息的发送顺序进行消费的消息(FIFO)
默认情况下生产者会把消息以Round Robin轮询方式发送到不同的Queue分区队列;而消费消息时会从多个Queue上拉取消息,这种情况下的发送和消费是不能保证顺序的。
如何保证消息有序
将消息仅发送到同一个Queue中,消费时也只从这个Queue上拉取消息,就严格保证了消息的顺序性
为什么需要顺序消息
例如,现在有TOPIC ORDER_STATUS (订单状态),其下有4个Queue队列,该Topic中的不同消息用于描述当前订单的不同状态。
假设订单有状态:未支付、已支付、发货中、发货成功、发货失败。
根据以上订单状态,生产者从时序上可以生成如下几个消息:
订单T0000001:未支付 --> 订单T0000001:已支付 --> 订单T0000001:发货中 --> 订单T0000001:发货失败
消息发送到MQ中之后,Queue的选择如果采用轮询策略,消息在MQ的存储可能如下:
这种情况下,我们希望Consumer消费消息的顺序和我们发送是一致的,然而上述 MQ的投递和消费方式,我们无法保证顺序是正确的。对于顺序异常的消息,Consumer即使设置有一定的状态容错,也不能完全处理好这么多种随机出现组合情况
基于上述的情况,可以设计如下方案:对于相同订单号的消息,通过一定的策略,将其放置在一个Queue中,然后消费者再采用一定的策略(例如,一个线程独立处理一个queue,保证处理消息的顺序性),能够保证消费的顺序性
有序性分类
全局有序
当发送和消费参与的Queue只有一个时所保证的有序是整个Topic中消息的顺序, 称为全局有序
在创建Topic时指定Queue的数量。有三种指定方式:
- 在代码中创建Producer时,可以指定其自动创建的Topic的Queue数量
- 在RocketMQ可视化控制台中手动创建Topic时指定Queue数量
- 使用mqadmin命令手动创建Topic时指定Queue数量
分区有序
如果有多个Queue参与,其仅可保证在该Queue分区队列上的消息顺序,则称为分区有序
如何实现Queue的选择?
在定义Producer时我们可以指定消息队列选择器,而这个选择器是我们自己实现了MessageQueueSelector接口定义的
在定义选择器的选择算法时,一般需要使用选择key。这个选择key可以是消息key也可以是其它数据。但无论谁做选择key,都不能重复,都是唯一的
一般性的选择算法【取模算法】
让选择key(或其hash值)与该Topic所包含的Queue的数量取模,其结果即为选择出的Queue的QueueId
取模算法存在一个问题
不同选择key与Queue数量取模结果可能会是相同的,即不同选择key的消息可能会出现在相同的Queue,即同一个Consuemr可能会消费到不同选择key的消息。
这个问题如何解决?
一般的作法是从消息中获取到选择key,对其进行判断。若是当前Consumer需要消费的消息,则直接消费,否则,什么也不做。这种做法要求选择key要能够随着消息一起被Consumer获取到。此时使用消息key作为选择key是比较好的做法
以上做法会不会出现如下新的问题呢?
不属于那个Consumer的消息被拉取走了,那么应该消费该消息的Consumer是否还能再消费该消息呢?同一个Queue中的消息不可能被同一个消费者组中的不同Consumer同时消费。所以,消费同一个Queue的不同选择key的消息的Consumer一定属于不同的消费者组。而不同的消费者组中的Consumer间的消费是相互隔离的,互不影响的。
分区有序代码实现
public class OrderedProducer {
public static void main(String[] args) throws Exception {
DefaultMQProducer producer = new DefaultMQProducer("pg");
producer.setNamesrvAddr("rocketmqOS:9876");
producer.start();
for (int i = 0; i < 100; i++) {
Integer orderId = i;
byte[] body = ("Hi," + i).getBytes();
Message msg = new Message("TopicA", "TagA", body);
SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
Integer id = (Integer) arg;
int index = id % mqs.size();
return mqs.get(index);
}
}, orderId);
System.out.println(sendResult);
}
producer.shutdown();
}
}
什么是延时消息
当消息写入到Broker后,在指定的时长后才可被消费处理的消息,称为延时消息
采用RocketMQ的延时消息可以实现定时任务的功能,而无需使用定时器。
典型的应用场景
- 电商交易中超时未支付关闭订单的场景
在电商平台中,订单创建时会发送一条延迟消息。这条消息将会在30分钟后投递给后台业务系统(Consumer),后台业务系统收到该消息后会判断对应的订单是否已经完成支付。如果未完成,则取消订单,将商品再次放回到库存;如果完成支付,则忽略
- 12306平台订票超时未支付取消订票的场景
在12306平台中,车票预订成功后就会发送一条延迟消息。这条消息将会在45分钟后投递给后台业务系统(Consumer),后台业务系统收到该消息后会判断对应的订单是否已经完成支付。如果未完成,则取消预订,将车票再次放回到票池;如果完成支付,则忽略
延时等级
延时消息的延迟时长不支持随意时长的延迟,是通过特定的延迟等级来指定的。延时等级定义在RocketMQ服务端的MessageStoreConfig类中的如下变量中
messageDelayLevel = '1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h';
即,若指定的延时等级为3,则表示延迟时长为10s,即延迟等级是从1开始计数的
当然,如果需要自定义的延时等级,可以通过在broker加载的配置中新增如下配置(例如下面增加了1 天这个等级1d)。
messageDelayLevel = 1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h 1d
配置文件在RocketMQ安装目录下的conf目录中
延时消息实现原理
具体实现方案是:
Producer将消息发送到Broker后,Broker会首先将消息写入到commitlog文件,然后需要将其分发到相应的consumequeue。不过,在分发之前,系统会先判断消息中是否带有延时等级。若没有,则直接正常分发;若有则需要经历一个复杂的过程:
- 修改消息的Topic为SCHEDULE_TOPIC_XXXX
- 根据延时等级,在consumequeue目录中SCHEDULE_TOPIC_XXXX主题下创建出相应的queueId目录与consumequeue文件(如果没有这些目录与文件的话)
延迟等级delayLevel与queueId的对应关系为queueId = delayLevel -1
需要注意在创建queueId目录时,并不是一次性地将所有延迟等级对应的目录全部创建完毕, 而是用到哪个延迟等级创建哪个目录
- 修改消息索引单元内容。索引单元中的Message Tag HashCode部分原本存放的是消息的Tag的Hash值。现修改为消息的投递时间。投递时间是指该消息被重新修改为原Topic后再次被写入到commitlog中的时间。投递时间 = 消息存储时间 + 延时等级时间。消息存储时间指的是消息被发送到Broker时的时间戳
- 将消息索引写入到SCHEDULE_TOPIC_XXXX主题下相应的consumequeue中
SCHEDULE_TOPIC_XXXX目录中各个延时等级Queue中的消息是如何排序的
是按照消息投递时间排序的。一个Broker中同一等级的所有延时消息会被写入到consumequeue目录中SCHEDULE_TOPIC_XXXX目录下相同Queue中。即一个Queue中消息投递时间的延迟等级时间是相同的。那么投递时间就取决于于消息存储时间了。即按照消息被发送到Broker的时间进行排序的
投递延时消息
Broker内部有⼀个延迟消息服务类ScheuleMessageService,其会消费SCHEDULE_TOPIC_XXXX中的消息,即按照每条消息的投递时间,将延时消息投递到⽬标Topic中。不过,在投递之前会从commitlog中将原来写入的消息再次读出,并将其原来的延时等级设置为0,即原消息变为了一条不延迟的普通消息。然后再次将消息投递到目标Topic中(这其实就是一次普通消息发送。只不过这次的消息Producer是延迟消息服务类 ScheuleMessageService)
ScheuleMessageService在Broker启动时,会创建并启动一个定时器TImer,用于执行相应的定时任务。系统会根据延时等级的个数,定义相应数量的TimerTask,每个TimerTask负责一个延迟等级消息的消费与投递。每个TimerTask都会检测相应Queue队列的第一条消息是否到期。若第一条消息未到期,则后面的所有消息更不会到期(消息是按照投递时间排序的);若第一条消息到期了,则将该消息投递到目标Topic,即消费该消息
延时消息实现
public class DelayProducer {
public static void main(String[] args) throws Exception {
DefaultMQProducer producer = new DefaultMQProducer("pg");
producer.setNamesrvAddr("rocketmqOS:9876");
producer.start();
for (int i = 0; i < 10; i++) {
byte[] body = ("Hi," + i).getBytes();
Message msg = new Message("TopicB", "someTag", body);
// 指定消息延迟等级为3级,即延迟10s
msg.setDelayTimeLevel(3);
SendResult sendResult = producer.send(msg);
// 输出消息被发送的时间
System.out.print(new SimpleDateFormat("mm:ss").format(new Date()));
System.out.println(" ," + sendResult);
}
producer.shutdown();
}
}
事务消息
事务消息并不是为了解决分布式事务,而是提供消息发送与业务落库得一致性,其实现原理就是一次分布式事务的具体运用,RocketMQ采用了2PC的思想来实现了提交事务消息,同时增加一个补偿逻辑来处理二阶段超时或者失败的消息
注意:
- 事务消息不支持延时消息
- 对于事务消息要做好幂等性检查,因为事务消息可能不止一次被消费(因为存在回滚后再提交的情况)
什么是2PC【二阶段提交】 需补充
事务消息场景
这里的一个需求场景是:工行用户A向建行用户B转账1万元,我们可以使用同步消息来处理该需求场景:
- 工行系统发送一个给B增款1万元的同步消息M给Broker
- 消息被Broker成功接收后,向工行系统发送成功ACK
- 工行系统收到成功ACK后从用户A中扣款1万元
- 建行系统从Broker中获取到消息M
- 建行系统消费消息M,即向用户B中增加1万元
问题这其中是有问题的:若第3步中的扣款操作失败,但消息已经成功发送到了Broker。对于MQ来说,只要消息写入成功,那么这个消息就可以被消费。此时建行系统中用户B增加了1万元。出现了数据不一致问题
解决思路
解决思路是,让第1、2、3步具有原子性,要么全部成功,要么全部失败。即消息发送成功后,必须要保证扣款成功。如果扣款失败,则回滚发送成功的消息。而该思路即使用事务消息。这里要使用分布式事务解决方案
使用事务消息来处理该需求场景:
- 事务管理器TM向事务协调器TC发起指令,开启全局事务
- 工行系统发一个给B增款1万元的事务消息M给TC
- TC会向Broker发送半事务消息prepareHalf,将消息M预提交到Broker。此时的建行系统是看不到Broker中的消息M的
- Broker会将预提交执行结果Report给TC
- 如果预提交失败,则TC会向TM上报预提交失败的响应,全局事务结束;如果预提交成功,TC会调用工行系统的回调操作,去完成工行用户A的预扣款1万元的操作
- 工行系统会向TC发送预扣款执行结果,即本地事务的执行状态
- TC收到预扣款执行结果后,会将结果上报给TM,预扣款执行结果存在三种可能性:
- 本地事务执行成功
- 本地事务执行失败
- 不确定,表示需要进行回查以确定本地事务的执行结果
- TM会根据上报结果向TC发出不同的确认指令
- 若预扣款成功(本地事务状态为COMMIT_MESSAGE),则TM向TC发送Global Commit指令
- 若预扣款失败(本地事务状态为ROLLBACK_MESSAGE),则TM向TC发送Global Rollback指令
- 若现未知状态(本地事务状态为UNKNOW),则会触发工行系统的本地事务状态回查操作。回查操作会将回查结果,即COMMIT_MESSAGE或ROLLBACK_MESSAGE Report给TC。TC将结果上报给TM,TM会再向TC发送最终确认指令Global Commit或Global Rollback
- TC在接收到指令后会向Broker与工行系统发出确认指令
- TC接收的若是Global Commit指令,则向Broker与工行系统发送Branch Commit指令。此时Broker中的消息M才可被建行系统看到;此时的工行用户A中的扣款操作才真正被确认
- TC接收到的若是Global Rollback指令,则向Broker与工行系统发送Branch Rollback指令。此时Broker中的消息M将被撤销;工行用户A中的扣款操作将被回滚
总结以上方案就是为了确保消息投递与扣款操作能够在一个事务中,要成功都成功,有一个失败,则全部回滚,以上方案并不是一个典型的XA模式。因为XA模式中的分支事务是异步的,而事务消息方案中的消息预提交与预扣款操作间是同步的