译者:hijkzzz

卷积函数

conv1d

torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) → Tensor

对由多个输入平面组成的输入信号进行一维卷积.

有关详细信息和输出形状, 请参见Conv1d.

注意

在某些情况下, 当使用CUDA后端与CuDNN时, 该操作符可能会选择不确定性算法来提高性能. 如果这不是您希望的, 您可以通过设置torch.backends.cudn .deterministic = True来尝试使操作具有确定性(可能会以性能为代价). 请参阅关于 Reproducibility 了解背景.

参数:

  • input – 输入tensor, 形状为
  • weight – 卷积核, 形状为
  • bias – 可选的偏置, 形状为 . 默认值: None
  • stride – 卷积核的步幅, 可以是单个数字或一个元素元组(sW,). 默认值: 1
  • padding – 在输入的两边隐式加零. 可以是单个数字或一个元素元组(padW, ). 默认值: 0
  • dilation – 核元素之间的空洞. 可以是单个数字或单元素元组(dW,). 默认值: 1
  • groups – 将输入分成组, 应该可以被组的数目整除. 默认值: 1

例子:

>>> filters = torch.randn(33, 16, 3)
>>> inputs = torch.randn(20, 16, 50)
>>> F.conv1d(inputs, filters)

阅读全文/改进本文