只发PCB电路相关46  随时更新~~

一、信号是怎么搞到电磁波上面去的

介绍几种最基本的信号调试方式。虽然在现在的通信制式中,这些调制方式有很多的不足,但是作为信号入门的基础,我们不妨再花点时间复习一下呗。

AM:Amplitude Modulation, 幅度调制,顾名思义,这种调制方式改变的是信号的幅度或者强度。幅度调制是第一种用于广播声音的调制类型。今天,其他形式的调制正被越来越多地使用,但幅度调制仍在广泛使用。

嵌入式~PCB专辑46_封装

FM:Frequency modulation,频率调制,这种调试方式改变的是信号的频率。频率调制的优点是可以限制信号上的幅度噪声,因为只有频率变化才能携带所需的信息。这可以通过使信号通过一个进入限制的阶段来实现,从而消除可能是噪声和一般信号变化的结果的幅度变化。如果有足够的信号使某个阶段进入限制状态,则任何信号强度变化都不会改变解调音频的电平,假设正在传输音频。因此,调制形式已被用于许多应用,包括高质量的模拟声音广播。

嵌入式~PCB专辑46_焊盘_02

PM:Phase modulation,相位调制,相位调制根据调制信号改变载波的相位。相位调制和频率调制有许多相似之处并且是相互联系的——一个是另一个的差分。然而,相位调制适用于数据传输,因此近年来它的使用迅速增长。

嵌入式~PCB专辑46_数字电路_03

每种调制方式都有其自身的优点和缺点,因此它们都用于不同的无线电通信应用中。

除了调制或调制技术的三种主要基本形式外,每种类型还有许多变体。同样,这些调制技术用于各种应用,一些用于模拟应用,而另一些用于数字应用。

角度调制

角度调制是基于改变正弦载波的角度或相位的调制形式的名称。使用角度调制,载波的幅度没有变化。属于角度调制类别的两种调制形式是频率调制和相位调制。

两种类型的角度调制,即频率调制和相位调制是相互关联的,因为频率是相位的导数,即频率是相位的变化率。

另一种看待这两种调制类型之间联系的方法是,可以通过首先对调制波形进行积分然后将结果用作相位调制器的输入来生成频率调制信号。相反,可以通过首先对调制信号进行微分,然后将结果用作频率调制器的输入来生成相位调制信号。

调制组合

可以使用结合幅度和角度调制分量的调制形式。以这种方式可以获得性能的增强。

  • 正交幅度调制,QAM:   使用这种形式的信息幅度和相位信息用于承载信号。数据被调制到信号的同相和正交元素上:I & Q 和星座在两个平面上形成多个点。
  • 幅度和相位筛选键控,APSK:   与 QAM 相比,使用 APSK,可以安排星座以优化峰值与平均功率比,并且可以设置更少的幅度级别。这使射频功率放大器能够更有效地工作。

信号带宽

任何信号的一个关键要素是它占用的带宽。这很重要,因为它定义了所需的信道带宽,因此定义了在给定无线电频谱段内可以容纳的信道数量。随着无线电频谱压力的增加,无线电信号带宽是任何类型无线电发射或传输的重要特征。

带宽由两个主要特征控制:

  • 调制类型   某些调制形式比其他形式更有效地利用其带宽。因此,在频谱使用很重要的情况下,仅此一项就可能决定调制的选择。
  • 调制信号的带宽:   称为香农定律的定律决定了信号可以传输的最小带宽。一般来说,调制信号的带宽越宽,所需的带宽就越宽。

调制信号类型

在选择要使用的调制类型时,有必要查看每种调制类型的优缺点。AM和FM广泛用于模拟声音传输,而相移键控和正交幅度调制通常用于传输数字数据。

我们把幅度调制和频率调制放到一起,大家来观察一下他们之间的区别。

嵌入式~PCB专辑46_封装_04

 二、防反接常用单元电路

 对于平常日用的一些产品,产品在进行设计时就会考虑这个问题,顾客只是简单的利用插头进行电源的连接,所以一般采用反插错接头,这是种简单,低价而有效的方法。

    但是,对于产品处于工厂生产阶段,可能不便采用防差错接头,这可能就会造成由于生产人员的疏忽造成反接,带来损失。所以给电路增加防接反电路有时还是有必要的,尽管增加了成本。

    下面就说说常用的防反接电路:

01   最简单的在电路中串入一只二极管

嵌入式~PCB专辑46_嵌入式硬件_05

优点:

    电路简单,成本较低。适用于小电流,对成本要求比较严的产品。

缺点:

    由于二极管的PN结在导通时,存在一个压降,一般在0.7V以下。这个压降就导致这种电路不适合应用在电流较大的电路中,如果电路有10A的电流,那么二极管的功耗就是0.7*10=7W,发热量还是很可观的。在结构紧凑空间有限的产品中,对产品的稳定性或人的使用感受上影响还是比较大的。

02 对于上面上面提到的二极管的压降问题,有没有办法克服呢?看下面的电路

嵌入式~PCB专辑46_封装_06

  上面的防接反电路采用了一个保险丝和一个反向并联的二极管,电源极性正确,电路正常工作时,由于负载的存在电流较小,二极管处于反向阻断状态,保险丝不会被熔断。

    当电源接反时,二极管导通,此时的电流比较大,就会将保险丝熔断,从而切断电源的供给,起到保护负载的作用。

优点:

    保险丝的压降很小,不存在发热问题。成本不高。

缺点:

    一旦接反需要更换保险丝,操作比较麻烦。

03  正接反接都可正常工作的电路:

嵌入式~PCB专辑46_封装_07

优点:

    输入端无论怎样接,电路都可以正常工作。

缺点:

    存在两个二极管的压降。适用于小电流电路。

04  N沟道增强型场效应管防接反电路。

    由场效应管制作工艺决定了,场效应管的导通电阻比较小。是现在很常用的开关器件,特别是在大功率的场合。以TO-252封装的IRFR1205为例,其主要参数如下:Vdss=55V,Id=44A,Rds=0.027欧姆;可以看到其导通电阻只有27毫欧。

    下图就是一个用N沟道场效应管构成的防接反电路

嵌入式~PCB专辑46_嵌入式硬件_08

 这个电路的最大一个特点就是场效应管的D极和S极的接法。通常我们在使用N沟道的增强型的MOS管时,一般是电流由D极进入而从S极流出。应用在这个电路中时则正好相反。

    曾经在一个论坛中看到过这个电路,发布这个电路的楼主被众多网友痛批。说是DS之间存在一个二极管根本没法实现。楼主没有注明场效应管的管脚名称,由于存在一个应用场效应管的惯性思维,导致楼主蒙冤。其实场效应管只要在G和S极之间建立一个合适的电压就会完全导通。导通之后D和S之间就像是一个开关闭合了,电流是从D到S或S到D都一样的电阻。

    在电源极性正确时,电流起始时通过场效应管的稳压管导通,S极电压接近0V。两个电阻分压后,为G提供电压,使场效应管导通,因为其导通阻值很小,就把场效应管内部的二极管给替代了。

    电源反接时,场效应管内的二极管未到击穿电压不导通。分压电阻无电流流过无法提供G极电压,也不导通。从而起到保护作用。

    对于电路中并联在分压电阻上的稳压二极管,因为场效应管的输入电阻是很高的,是一个压控型器件,G极电压要控制在20V内,过高的电压脉冲会导致G极的击穿,这个稳压二极管就是起一个保护场效应管防止击穿的作用。

    对于并联在分压电阻上的电容,有一个软启动的作用。在电流开始流过的瞬间,电容充电,G极的电压是逐步建立起来的。

    对于并联在场效应管D与S之间的阻容串联电路,我感觉还是值得商榷的。阻容串联电路一般用作脉冲吸收或延时。用在这里要视负载的情况而定,加了或许反而不好。毕竟这会导致在电源在反接的时候会有一个短暂的导通脉冲。

    也可以用P沟道的场效应管,只是要将器件串在正极的输入端。这里不再描述。

三、去耦电容的作用

    “ 电路中装设在元件的电源端的电容为去耦电容。”

去耦电容

    去耦电容是电路中装设在元件的电源端的电容,此电容可以提供较稳定的电源,同时也可以降低元件耦合到电源端的噪声,间接可以减少其他元件受此元件噪声的影响。

嵌入式~PCB专辑46_数字电路_09

在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

    在共享导体的电路中,共享电源的时候,当一个器件需要对外提供输出的时候就会同时拉低该导体的电压,产生噪声耦合到共享的电路中。在有噪声的环境中,这些电磁波会在导体内感应出电压信号,影响回路中的元件。在数位电路中,器件容易在临界位置由于干扰而产生错误的信号,从而产生错误的动作。去耦电容可以减少以上情形的发生。

为什么加电容

    PCB设计过程中工程师几乎必做的事就是给每个电源管脚(Vcc、Vdd等)加上一个0.1uF的陶瓷电容,并在某些地方加上更大容量的极性电容,几乎成了每天吃饭必定要吃碗米一样的事情了,但Why呢?

  • 为什么要加这些电容?
  • 为什么要加0.1uF的?
  • 为什么有时还要加其它值的电容?
  • 在PCB上这些电容放在哪里?

嵌入式~PCB专辑46_焊盘_10

  本质上我们设计的所有电路可以像下图一样抽象一下:

  • 板子上有n个不同的负载(比如某个运放电路、MCU的内核、MCU的IO、ADC、时钟),每个负载都需要稳定地供电 - 电压稳定、干净,电流充足,在此图上我只画出2个负载进行举例;
  • 电源产生电路,它为每个负载提供能源

嵌入式~PCB专辑46_嵌入式硬件_11

   每个负载要正常工作,前提就是负载上的供电电压要稳,如果是5V,就得是尽可能干净的5V,如下图:

嵌入式~PCB专辑46_焊盘_12

    但该负载内的器件们工作起来,都要动态地吸收电流,供电电压就变成了下面的鸟样子:

嵌入式~PCB专辑46_数字电路_13

也就是在5V的DC上叠加了各种高频率的噪声,这些噪声是由于器件对供电电流的需求导致的电压波动,可以看成是在DC 5V上“耦合”了由于器件工作带来的AC噪声。

    这样耦合了AC的DC供电电压不仅会影响本负载区域内的电路的工作,也会影响到其它连接在同一个VCC上的其它负载的工作,有可能导致那些负载的电路工作出现问题。

怎么办呢?当然就是把每个地区的问题控制在该地区范围内喽:

  • 电源供电取决于变换的方式,其供电本身在DC上就有纹波,因此我们需要在电源输出Vout端要有电容C1(我们可以看成是国家粮仓)负责将供电电压上的噪声降到尽可能的低,完全为零是不可能的,因为完美的世界从来都不存在,只要不影响后面负载的正常工作即可。
  • 既然每个负载工作起来会导致其电源出现额外的波动,那就让波动在本地尽可能降低,且不影响到其它负载的工作。降低负载供应波动影响的方式就是加强能即时响应的供给(本地粮库) - 通过备用的供给平滑掉主供给快速反应方面的不足。电容的本性就是储能,用电容来做备用电能提供供给也就能平滑掉负载瞬间的需求带来的波动(不同的电容响应速度也不同,且听下文分解),保证该负载的电压尽可能稳定,也就是将有可能耦合到DC上的AC给去除掉(去耦的含义1),同时由于让本地的DC稳定,降低了对其它负载的波及(去耦的含义2)。

嵌入式~PCB专辑46_封装_14

  从电源上看,没有去耦电容的时候如左侧的波形,加上了去耦电容之后变成了右侧的样子,供电电压的波形变得干净了,我们称该电容的作用是去掉了耦和在干净的DC上的噪声,所以该电容被称之为去耦电容,当然也可以被称之为旁路(Bypass)电容,因为该电容将DC上耦和的噪声给旁路到地上去了,只留下干净的DC给后续的电路供电。

嵌入式~PCB专辑46_嵌入式硬件_15

举一个例子 :

    每个负载的工作就像我们平日吃“粮食”,每家的用量是动态的、不确定的,所有家庭用的“粮食”加在一起平均下来就相当于在本地区的供粮量(稳定的),但由于每家每天的粮食消耗量很随机,导致供粮的渠道上会有波动,如果没有本地区的粮库(每家也都有储备粮),每个地区的粮食供应就会出现波动,而且A地区的波动就会影响到B地区,我们当然不希望这种情况发生,所以在每个地区都会有本地粮库储存粮食,这样每个地区内部用粮得到保障,地区和地区之间不会产生干扰。

    当然如果给所有地区供粮的上游出现了波动,而这种波动超过了本地粮库的平滑能力,那该地区的家庭用粮自然也会出现问题。
就是如此简单。

电容的作用

嵌入式~PCB专辑46_嵌入式硬件_16

1、大容值电容的作用

    容值比较大的电容,理论上可以理解成水缸或者水池子,同时,大家可以直接把电流理解成水流,其实大自然万物的原理都是类似的。

    【作用一】缓冲作用。

    当上电的瞬间,电流从电源处流下来的时候,不稳定,容易冲击电子器件,加个电容可以起到缓冲作用。就如同我们直接用水龙头的水浇地,容易冲坏花花草草。我们只需要在水龙头处加个水池,让水经过水池后再缓慢流进草地,就不会冲坏花草,起到有效的保护作用。

    【作用二】稳定作用。

    我们的一整套电路,后级电子器件的功率大小都不一样,而器件正常工作的时候,所需电流的大小也不是一成不变的。比如后级有个器件还没有工作的时候,电流消耗是100mA,突然它参与工作了,电流猛的增大到了150mA,这个时候如果没有一个水缸的话,电路中的电压(水位)就会直接突然下降,比如我们的5V电压突然降低到3V了。

    而我们系统中有些电子元器件,必须高于一定的电压才能正常工作,电压太低就直接不工作了,这个时候水缸就必不可少了。电容会在这个时候把存储在里边的电量释放一下,稳定电压,当然,随后前级的电流会及时把水缸充满的。

    有了这个电容,可以说我们的电压和电流就会很稳定了,不会产生大的波动。这种电容常用的有如图3-2、图3-3、图3-4 所示三种:

    这三种电容是最常用的三种,其中第一种个头大,占空间大,单位容量价格最便宜,第二种和第三种个头小,占空间小,性能一般也略好于第一种,但是价格也贵不少。当然,除了价格,还有一些特殊参数,在通信要求高的场合也要考虑很多。

嵌入式~PCB专辑46_封装_17

2、电容的选取

    第一个参数是耐压值的考虑。我们用的是5V系统,电容的耐压值要高于5V,一般1.5倍到2倍即可,有些场合稍微再高点也可以。

    第二个参数是电容容值,这个就需要根据经验来选取了,选取的时候,要看这个电容起作用的整套系统的功率消耗情况,如果系统耗电较大,波动可能比较大,那么容值就要选大一些,反之可以小一些。

嵌入式~PCB专辑46_数字电路_18

3、小容值电容的作用

    我们再来看图3-1中的另一种电容C10,它容值较小,是0.1uF,也就是 100nF,是用来滤除高频信号干扰的。比如ESD,EFT等。我们初中学过电容的特性——可以通交流隔直流,但是电容的参数对不同频率段的干扰的作用是不一样的。

    这个100nF的电容,是我们的前辈根据干扰的频率段,根据板子的参数,根据电容本身的参数所总结出来的一个值。也就是说,以后大家在设计数字电路的时候,在电源处的去耦高频电容,直接用这个 0.1uF就可以了,不需要再去计算和考量太多。

4、其他注意事项

    在所有的IC器件的VCC和GND之间,都放一个0.1uF的高频去耦电容,特别在布板的时候,这个0.1uF电容要尽可能的靠近IC,尽量很顺利的与这个 IC的VCC和GND连到一起。

四、从焊接角度谈画PCB时应注意哪些问题

随着电子技术的飞速发展,电子元器件的小型化、微型化、间距为0.3mm~0.5mm高密度的芯片越来越普遍,对电子焊接技术的要求也就越来越高。虽然现在有了更精密的贴片机可以代替人工焊接,但影响焊接质量的因素太多。本文将从贴片焊接的角度,介绍了几点PCB设计时需要注意的要点,根据经验,如果未按照这些要求,很有可能造成焊接质量不高,虚焊和甚至在返修PCB的时候损坏焊盘或电路板。

#1、影响PCB焊接质量的因素

从PCB设计到所有元件焊接完成为一个质量很高的电路板,需要PCB设计工程师乃至焊接工艺、焊接工人的水平等诸多环节都有着严格的把控。主要有以下因素:PCB图、电路板的质量、器件的质量、器件管脚的氧化程度、 锡膏的质量、锡膏的印刷质量、贴片机的程序编制的精确程度、贴片机的贴装质量、回流焊炉的温度曲线的设定等等因素。

焊接厂本身无法逾越的环节就是PCB画图的环节。由于做电路设计的人往往不焊电路板从而无法获得直接的焊接经验,不知道影响焊接的各种因素;而焊接厂的工人不 懂画板,他们只管完成生产任务,没有心思、更没有能力分析造成不良焊接的原因。由于这两方面的人才各司其职,难以有机结合。

#2、画PCB图时的建议

下面我就PCB画图的环节给画PCB图的设计布线工程师们提出一些建议,希望在画图的过程中能避免出现影响焊接质量的各种不良画法。将主要以图文的形式介绍。

1、关于定位孔:PCB板的四角要留四个孔(最小孔径 2.5mm),用于印刷锡膏时定位电路板。要求X轴或Y轴方向圆心在同一轴线上,如下图:

嵌入式~PCB专辑46_嵌入式硬件_19

2、关于Mark点:用于贴片机定位。PCB板上要标注Mark点,具体位置:在板的斜对角,可以是圆形,或方形的焊盘,不要跟其它器件的焊盘混在一起。如果双面有器件,双面都要标注。

设计PCB时,请注意以下几点:

a、Mark点的形状如以下图案。(上下对称或左右对称)

嵌入式~PCB专辑46_封装_20

b、A的尺寸为2.0mm。

c、从Mark点的外缘离2.0mm的范围内,不应有可能引起错误的识别的形状和颜色变化。(焊盘、焊膏)

d、Mark点的颜色要和周围PCB的颜色有明暗差异。

e、为了确保识别精度,Mark点的表面上电镀铜或锡来防止表面反射。对形状只有线条的标记,光点不能识别。

如下图所示:

嵌入式~PCB专辑46_数字电路_21

3、关于留5mm边:画PCB时,在长边方向要留不少于3mm的边用于贴片机运送电路板,此范围内贴片机无法贴装器件。此范围内不要放置贴片器件。如图:

嵌入式~PCB专辑46_焊盘_22

双面有器件的电路板应考虑到第二次过回流时会把已焊好的一面靠边的器件蹭掉,严重时会蹭掉焊盘、毁坏电路板。如下图所示:

嵌入式~PCB专辑46_嵌入式硬件_23

所以建议芯片少的一面(一般为Bottom面)的长边离边5mm范围内不要放置贴片器件。如果确实由于电路板面积受限,可以在长边加工艺边,参见本文17条“关于拼板的建议及加工艺边”。

4、不要直接在焊盘上过孔:直接在焊盘上过孔的缺陷是在过回流时锡膏熔化后流到过孔内,造成器件焊盘缺锡,从而形成虚焊。如图:

嵌入式~PCB专辑46_嵌入式硬件_24

5、关于二极管、钽电容的极性标注:二极管、钽电容的极性标注应符合行规,以免工人凭经验焊错方向。如图:

嵌入式~PCB专辑46_封装_25

6、关于丝印和标识:请将器件型号隐藏。尤其是器件密度高的电路板。否则,眼花缭乱影响找到焊接位置。如下图:

嵌入式~PCB专辑46_嵌入式硬件_26

也不要只标型号,不标标号。如下图所示,造成贴片机编程时无法进行。

嵌入式~PCB专辑46_封装_27

丝印字符的字号不应太小,以至于看不清。字符放置位置应错开过孔,以免误读。

嵌入式~PCB专辑46_焊盘_28

7、关于IC焊盘应延长:SOP、PLCC、QFP等封装的IC画PCB时应延长焊盘,PCB上焊盘长度=IC脚部长度×1.5为适宜,这样便于手工用烙铁焊接时,芯片管脚与PCB焊盘、锡三者熔为一体。如图:

嵌入式~PCB专辑46_嵌入式硬件_29

8、关于IC焊盘的宽度:SOP、PLCC、QFP等封装的IC,画PCB时应注意焊盘的宽度,PCB上焊盘a的宽度=IC脚部宽度(即:datasheet中的Nom.值),请不要增宽,保证b(即两焊盘间)有足够的宽度,以免造成连焊。如图:

嵌入式~PCB专辑46_焊盘_30

9、放置器件不要旋转任意角度:由于贴片机无法旋转任意角度,只能旋转90℃、180℃、270℃、360℃。如下图B 旋转了1℃,贴片机贴装后器件管脚与电路板上的焊盘就会错开1℃的角度,从而影响焊接质量。

嵌入式~PCB专辑46_嵌入式硬件_31

10、相邻管脚短接时应注意的问题:下图a的短接方法不利于工人识别该管脚是否应该相连,且焊接后不美观。如果画图时按图b、图c的方法短接并加上阻焊,焊接出来的效果就不一样:只要保证每个管脚都不相连,该芯片就无短路现象,而且外观也美观。

嵌入式~PCB专辑46_焊盘_32

11、关于芯片底下中间有焊盘的问题:芯片底下中间有焊盘的芯片画图时如果按芯片的封装图画中间的焊盘,就容易引起短路现象。建议将中间的焊盘缩小,使它与周围管脚焊盘之间的距离增大,从而减少短路的机会。如下图:

嵌入式~PCB专辑46_嵌入式硬件_33

12、厚度较高的两个器件不要紧密排在一起:如下图所示,这样布板会造成贴片机贴装第二个器件时碰到前面已贴的器件,机器会检测到危险,造成机器自动断电。

嵌入式~PCB专辑46_封装_34

13、关于BGA:由于BGA封装比较特殊,其焊盘都在芯片底下,外面看不到焊接效果。为了返修方便,建议在PCB板上打两个 Hole Size:30mil 的定位孔,以便返修时定位(用来刮锡膏的)钢网。

温馨提示:定位孔的大小不宜过大或过小,要使针插入后不掉、不晃动、插入时稍微有点紧为宜,否则定位不准。如下图:

嵌入式~PCB专辑46_数字电路_35

而且建议BGA周围一定的范围内要留出空地别放置器件,以便返修时能放得下网板刮锡膏。

14、关于PCB板的颜色:建议不要做成红色。因为红色电路板在贴片机的摄像机的红色光源下呈白色,无法进行编程,不便于贴片机进行焊接。

15、关于大器件下面的小器件:有的人喜欢将小的器件排在同一层的大器件底下,比如:数码管底下有电阻,如下图:

嵌入式~PCB专辑46_封装_36

如此排版会给返修造成困难,返修时必须先拆数码管,还有可能造成数码管损坏。建议将数码管底下的电阻排到Bottom面,如下图:

嵌入式~PCB专辑46_焊盘_37

16、关于覆铜与焊盘相连影响熔锡:由于覆铜会吸收大量热量,造成焊锡难以充分熔化,从而形成虚焊。如图所示:

嵌入式~PCB专辑46_数字电路_38

图a中器件焊盘直接与覆铜相连;图b中50Pins连接器虽然没直接与覆铜相连,但由于四层板的中间两层为大面积覆铜,所以图a、图b都会因为覆铜吸收 大量热量而造成锡膏不能充分熔化。图b中50Pins连接器的本体是不耐高温的塑料,若温度设定高了,连接器的本体会熔化或变形,若温度设定低了,覆铜吸 收大量热量而造成锡膏不能充分熔化。因此,建议焊盘与大面积覆铜隔离。如图所示:

嵌入式~PCB专辑46_焊盘_39

17、关于拼板的建议及加工艺边:

嵌入式~PCB专辑46_封装_40

#3、总结

现如今,能用软件进行画图,布线并设计PCB的工程师越来越多,但是一经设计完成,并能很好的提高焊接效率,作者认为需要重点注意以上要素。并且培养良好的画图习惯,能够很好的以加工工厂进行很好的沟通,是每一个工程师都要考虑的。

五、为什么要一点接地

详细介绍PCB板中模拟电路和数字电路共地和不共地的区别。

    为了大家看的明白...用ORCAD画了两个电路,一个是一个普通的三极管模拟放大电路,另一个是数字电路振荡器。

下面是一点接地时候两个电路的电路图

嵌入式~PCB专辑46_数字电路_41

 其实在原理图中没有必要把一点接地画成这样,只是为了大家看的更明白。.大家可以看的出来,左边是普通的放大电路,右边是一个振荡器。因为仿真时候数字电路部分的电流太小,所以后面接一级三极管。

    下面是两个电路的波形图:

嵌入式~PCB专辑46_嵌入式硬件_42

    大家可以看的到这两个波形都十分好,没有失真。

    红色的为三极管放大器放大时候的波形,绿色为振荡器波形,有人可能要问红色的为什么前一段波形不行?那是因为在ORCAD中模拟实际的电源,从没电到有电,是有一段时间的,所以前面一段波形很小。

    大家可以看出一点接地,两个电路都没有影响,互相工作的都很正常

下面发的不是一点接地时候的电路图

嵌入式~PCB专辑46_封装_43

    这里面用两个电阻来代PCB上走线的电阻,有人肯定会说,这不是扯蛋吗,PCB上的电阻哪有这么大。50欧......哈哈!

    在这里我为了大家看的更直观一些,所以用这么大。实际上是不会有这么大的,但相对于频率高的电路来说,有时候导线的阻抗远小于感抗!!!那就可能会产生这么大的电阻了,这里是数字电路接在后面。

    下面发的是两个电路的仿真波形,会不会和刚才一样没有干扰呢?

嵌入式~PCB专辑46_数字电路_44

 大家可以看到模拟电路的波形放大被干扰的不成样子了。

    单独发一张模拟的波形图,如下。

嵌入式~PCB专辑46_封装_45

   这失真是惨不忍睹。

    下面发数字的,由于数字的布在离电源近,被干扰的不是很严重。

嵌入式~PCB专辑46_嵌入式硬件_46

    大家可以看到数字电路还是被干扰了。

    再发一个放大的图来大家看看,如下。

嵌入式~PCB专辑46_嵌入式硬件_47

可以看看,被模拟干扰了吧?