Hi,我是王知无,一个大数据领域的原创作者。
放心关注我,获取更多行业的一手消息。
一. 组件及版本
本文用的组件包括以下几个,是参考了官方案例,版本可以参考github以及里面的pom文件。本文假定以下环境均已安装好。
- JDK (1.8)
- MySQL(version 5.6)
- Hadoop (2.7.2)
- Hive (version 2.4)
- Spark (version 2.4.1)
- Kafka (version 0.11)
- Griffin (version 0.6.0)
- Zookeeper (version 3.4.1)
这里有详细的配置过程和可能遇到的bug。
二. kafka数据生成脚本
由于是测试案例,我们就写一个生成数据的脚本,并且把数据写到kafka source中,真实的场景应该是源源不断写数据到kafka中的(比如flume或者其他工具),具体数据脚本和模版可以参考官方demo数据
gen-data.sh
#!/bin/bash
#current time
cur_time=`date +%Y-%m-%d_%H:%M:%S`
sed s/TIME/$cur_time/ /opt/module/data/source.temp > /opt/module/data/source.tp
#create data
for row in 1 2 3 4 5 6 7 8 9 10
do
sed -n "${row}p" < /opt/module/data/source.tp > sline
cnt=`shuf -i1-2 -n1`
clr="red"
if [ $cnt == 2 ]; then clr="yellow"; fi
sed s/COLOR/$clr/ sline >> /opt/module/data/source.data
done
rm sline
rm source.tp
#import data
kafka-console-producer.sh --broker-list hadoop101:9092 --topic source < /opt/module/data/source.data
rm source.data
echo "insert data at ${cur_time}"
streaming-data.sh
#!/bin/bash
#create topics
kafka-topics.sh --create --zookeeper hadoop101:2181 --replication-factor 1 --partitions 1 --topic source
kafka-topics.sh --create --zookeeper hadoop101:2181 --replication-factor 1 --partitions 1 --topic target
#every minute
set +e
while true
do
/opt/module/data/gen-data.sh
sleep 90
done
set -e
source.temp
{"id": 1, "name": "Apple", "color": "COLOR", "time": "TIME"}
{"id": 2, "name": "Banana", "color": "COLOR", "time": "TIME"}
{"id": 3, "name": "Cherry", "color": "COLOR", "time": "TIME"}
{"id": 4, "name": "Durian", "color": "COLOR", "time": "TIME"}
{"id": 5, "name": "Lichee", "color": "COLOR", "time": "TIME"}
{"id": 6, "name": "Peach", "color": "COLOR", "time": "TIME"}
{"id": 7, "name": "Papaya", "color": "COLOR", "time": "TIME"}
{"id": 8, "name": "Lemon", "color": "COLOR", "time": "TIME"}
{"id": 9, "name": "Mango", "color": "COLOR", "time": "TIME"}
{"id": 10, "name": "Pitaya", "color": "COLOR", "time": "TIME"}
三. Flink流式处理
flink流式数据分成三个部分,读取kafka,业务处理,写入kafka
- 首先交代我的pom.xml引入的依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.xxxx</groupId>
<artifactId>kafka_Flink_kafka_Test</artifactId>
<version>1.0-SNAPSHOT</version>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.7.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.1.0</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>com.ink.FlinkLambdaTest.FlinkToLambda</mainClass>
</transformer>
<transformer implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>reference.conf</resource>
</transformer>
</transformers>
<relocations>
<relocation>
<pattern>org.codehaus.plexus.util</pattern>
<shadedPattern>org.shaded.plexus.util</shadedPattern>
<excludes>
<exclude>org.codehaus.plexus.util.xml.Xpp3Dom</exclude>
<exclude>org.codehaus.plexus.util.xml.pull.*</exclude>
</excludes>
</relocation>
</relocations>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
<dependencies>
<!--<dependency>-->
<!--<groupId>org.apache.flink</groupId>-->
<!--<artifactId>flink-table_2.10</artifactId>-->
<!--<version>1.3.2</version>-->
<!--</dependency>-->
<dependency>
<groupId>org.json</groupId>
<artifactId>json</artifactId>
<version>20090211</version>
</dependency>
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.6.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_2.11</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.11</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.10_2.11</artifactId>
<version>1.10.1</version>
</dependency>
</dependencies>
</project>
- 先写个bean类模版,用来接收json数据
import java.util.Date;
public class Student{
private int id;
private String name;
private String color;
private Date time;
public Student(){}
public Student(int id, String name, String color, Date time) {
this.id = id;
this.name = name;
this.color = color;
this.time = time;
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getColor() {
return color;
}
public void setColor(String color) {
this.color = color;
}
public Date getTime() {
return time;
}
public void setTime(Date time) {
this.time = time;
}
@Override
public String toString() {
return "Student{" +
"id=" + id +
", name='" + name + '\'' +
", color='" + color + '\'' +
", time='" + time + '\'' +
'}';
}
}
- 读取kafka,有关读取和写入kafka的配置信息,是可以写到kafkaUtil工具类中的,我这里为了方便,就直接嵌入到代码中了,就做个测试
// 创建Flink执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 一定要设置启动检查点!!
//env.enableCheckpointing(5000);
//env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.setParallelism(1);
// Kafka参数
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "hadoop101:9092");
properties.setProperty("group.id", "consumer-group");
properties.setProperty("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
properties.setProperty("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
properties.setProperty("auto.offset.reset", "latest");
String inputTopic = "source";
String outputTopic = "target";
// Source
FlinkKafkaConsumer010<String> consumer =
new FlinkKafkaConsumer010<String>(inputTopic, new SimpleStringSchema(), properties);
DataStream<String> stream = env.addSource(consumer);
- flink业务处理,这一块由于所处的业务不同,我只是简单demo以下,以20%的概率修改数据使之成为异常数据用于检测,这是为了模拟业务中可能对数据处理有误而发生数据质量问题。这里要特别提一下,本案例是假定flink业务处理时延忽略不计,真实场景中可能由于flink处理延迟导致target端误认为数据丢失,这一部分我还在研究他的源码,日后更新,有了解的大神,还请指点迷津。
//使用Flink算子简单处理数据
// Transformations
// 使用Flink算子对输入流的文本进行操作
// 按空格切词、计数、分区、设置时间窗口、聚合
//{"id": 1, "name": "Apple", "color": "COLOR", "time": "TIME"}
DataStream<String> outMap = stream.map(new MapFunction<String, String>() {
@Override
public String map(String value) throws Exception {
return handleData(value);
}
});
public static String handleData(String line){
try {
if (line!=null&& !line.equals("")){
Gson gson = new GsonBuilder().setLenient().setDateFormat("yyyy-MM-dd_HH:mm:ss").create();
JsonReader reader = new JsonReader(new StringReader(line));
Student student = gson.fromJson(reader, Student.class);
int rand = ra.nextInt(10) + 1;
if (rand > 8) student.setName(student.getName() + "_" + ra.nextInt(10));
return gson.toJson(student);
}
else return "";
}catch (Exception e){
return "";
}
}
因为遇到了几个bug,所以这样创建gson
- 写入kafka,其中FlinkKafkaProducer010我们选择的构造器是(brokerList,topicId,serializationSchema)
//Sink
outMap.addSink(new FlinkKafkaProducer010<String>(
"hadoop101:9092",
"target",
new SimpleStringSchema()
));
outMap.print();
env.execute();
四. Apache Griffin配置与启动
有关griffin的streaming模式配置,就是配置dq.json和env.json
dq.json
{
"name": "streaming_accu",
"process.type": "streaming",
"data.sources": [
{
"name": "src",
"baseline": true,
"connector":
{
"type": "kafka",
"version": "0.10",
"config": {
"kafka.config": {
"bootstrap.servers": "hadoop101:9092",
"group.id": "griffin",
"auto.offset.reset": "largest",
"auto.commit.enable": "false"
},
"topics": "source_1",
"key.type": "java.lang.String",
"value.type": "java.lang.String"
},
"pre.proc": [
{
"dsl.type": "df-opr",
"rule": "from_json"
}
]
}
,
"checkpoint": {
"type": "json",
"file.path": "hdfs://hadoop101:9000/griffin/streaming/dump/source",
"info.path": "source_1",
"ready.time.interval": "10s",
"ready.time.delay": "0",
"time.range": ["-5m", "0"],
"updatable": true
}
}, {
"name": "tgt",
"connector":
{
"type": "kafka",
"version": "0.10",
"config": {
"kafka.config": {
"bootstrap.servers": "hadoop101:9092",
"group.id": "griffin",
"auto.offset.reset": "largest",
"auto.commit.enable": "false"
},
"topics": "target_1",
"key.type": "java.lang.String",
"value.type": "java.lang.String"
},
"pre.proc": [
{
"dsl.type": "df-opr",
"rule": "from_json"
}
]
}
,
"checkpoint": {
"type": "json",
"file.path": "hdfs://hadoop101:9000/griffin/streaming/dump/target",
"info.path": "target_1",
"ready.time.interval": "10s",
"ready.time.delay": "0",
"time.range": ["-1m", "0"]
}
}
],
"evaluate.rule": {
"rules": [
{
"dsl.type": "griffin-dsl",
"dq.type": "accuracy",
"out.dataframe.name": "accu",
"rule": "src.login_id = tgt.login_id AND src.bussiness_id = tgt.bussiness_id AND src.event_id = tgt.event_id",
"details": {
"source": "src",
"target": "tgt",
"miss": "miss_count",
"total": "total_count",
"matched": "matched_count"
},
"out":[
{
"type":"metric",
"name": "accu"
},
{
"type":"record",
"name": "missRecords"
}
]
}
]
},
"sinks": ["HdfsSink"]
}
env.json
{
"spark": {
"log.level": "WARN",
"checkpoint.dir": "hdfs://hadoop101:9000/griffin/checkpoint",
"batch.interval": "20s",
"process.interval": "1m",
"init.clear": true,
"config": {
"spark.default.parallelism": 4,
"spark.task.maxFailures": 5,
"spark.streaming.kafkaMaxRatePerPartition": 1000,
"spark.streaming.concurrentJobs": 4,
"spark.yarn.maxAppAttempts": 5,
"spark.yarn.am.attemptFailuresValidityInterval": "1h",
"spark.yarn.max.executor.failures": 120,
"spark.yarn.executor.failuresValidityInterval": "1h",
"spark.hadoop.fs.hdfs.impl.disable.cache": true
}
},
"sinks": [
{
"name":"ConsoleSink",
"type": "console"
},
{
"name":"HdfsSink",
"type": "hdfs",
"config": {
"path": "hdfs://hadoop101:9000/griffin/persist"
}
},
{
"name":"ElasticsearchSink",
"type": "elasticsearch",
"config": {
"method": "post",
"api": "http://hadoop101:9200/griffin/accuracy"
}
}
],
"griffin.checkpoint": [
{
"type": "zk",
"config": {
"hosts": "hadoop101:2181",
"namespace": "griffin/infocache",
"lock.path": "lock",
"mode": "persist",
"init.clear": true,
"close.clear": false
}
}
]
}
最后把项目提交到spark上运行,检测数据
spark-submit --class org.apache.griffin.measure.Application --master yarn --deploy-mode client --queue default \
--driver-memory 1g --executor-memory 1g --num-executors 3 \
<path>/griffin-measure.jar \
<path>/env.json <path>/dq.json
五. 全局代码
在本地创建个maven项目,由于这是个简单的测试项目,自己构建就好,我只写了两个类做测试
Student.class
import java.util.Date;
public class Student{
private int id;
private String name;
private String color;
private Date time;
public Student(){}
public Student(int id, String name, String color, Date time) {
this.id = id;
this.name = name;
this.color = color;
this.time = time;
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getColor() {
return color;
}
public void setColor(String color) {
this.color = color;
}
public Date getTime() {
return time;
}
public void setTime(Date time) {
this.time = time;
}
@Override
public String toString() {
return "Student{" +
"id=" + id +
", name='" + name + '\'' +
", color='" + color + '\'' +
", time='" + time + '\'' +
'}';
}
}
flinkProcess.class
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.google.gson.stream.JsonReader;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import java.io.StringReader;
import java.util.Properties;
import java.util.Random;
public class flinkProcess {
public static Random ra = new Random();
public static void main(String[] args) throws Exception {
// 创建Flink执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 一定要设置启动检查点!!
//env.enableCheckpointing(5000);
//env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.setParallelism(1);
// Kafka参数
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "hadoop101:9092");
properties.setProperty("group.id", "consumer-group");
properties.setProperty("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
properties.setProperty("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
properties.setProperty("auto.offset.reset", "latest");
String inputTopic = "source";
String outputTopic = "target";
// Source
FlinkKafkaConsumer010<String> consumer =
new FlinkKafkaConsumer010<String>(inputTopic, new SimpleStringSchema(), properties);
DataStream<String> stream = env.addSource(consumer);
//使用Flink算子简单处理数据
// Transformations
// 使用Flink算子对输入流的文本进行操作
// 按空格切词、计数、分区、设置时间窗口、聚合
//{"id": 1, "name": "Apple", "color": "COLOR", "time": "TIME"}
DataStream<String> outMap = stream.map(new MapFunction<String, String>() {
@Override
public String map(String value) throws Exception {
return handleData(value);
}
});
//Sink
outMap.addSink(new FlinkKafkaProducer010<String>(
"hadoop101:9092",
"target",
new SimpleStringSchema()
));
outMap.print();
env.execute();
}
public static String handleData(String line){
try {
if (line!=null&& !line.equals("")){
Gson gson = new GsonBuilder().setLenient().setDateFormat("yyyy-MM-dd_HH:mm:ss").create();
JsonReader reader = new JsonReader(new StringReader(line));
Student student = gson.fromJson(reader, Student.class);
int rand = ra.nextInt(10) + 1;
if (rand > 8) student.setName(student.getName() + "_" + ra.nextInt(10));
return gson.toJson(student);
}
else return "";
}catch (Exception e){
return "";
}
}
}
提示:在kafka中如果生成了一些不合格式的数据,程序会一直报错,可以参考这篇文章删除掉相应的kafka dataDir和zookeeper的znode数据,重新生成数据,运行代码。
如果这个文章对你有帮助,不要忘记 「点赞」 「收藏」