• 《Doris性能优化不要慌,再看看这里!- Join优化》
  • 《Doris性能优化不要慌,再看看这里!- 导入优化》

这篇是第三部分查询优化。

OLAP查询

对于高并发查询,其核心在于如何平衡有限的系统资源消耗与并发执行带来的高负载。换而言之,需要最大化降低单个 SQL 执行时的 CPU、内存和 IO 开销,其关键在于减少底层数据的 Scan 以及随后的数据计算。Doris能够实现高并发查询的能力主要是通过以下几个方面:

2.1 MPP架构

基于大规模并行处理(Massively Parallel Processing, MPP)架构设计,它可以将查询分解为多个任务,在多个节点上并行执行这些任务,使得系统可以通过增加更多的计算资源来线性扩展其查询处理能力。

2.2 列式存储

使用列式存储格式,对于任何给定的查询,它只需要读取涉及到的列而不是整行数据。这减少了磁盘I/O压力,因为只有必需的数据被加载到内存中。

2.3 分区分桶裁剪

Doris 采用两级分区,第一级是 Partition,通常可以将时间作为分区键。第二级为 Bucket,通过 Hash将数据打散至各个节点中,以此提升读取并行度并进一步提高读取吞吐。通过合理地划分区分桶,可以提高查询性。

2.4 索引和物化视图

Doris 支持创建索引和物化视图来加速查询,减少扫描行数和避免了大量的现场计算,例如前缀索引、Ordinal、ZoneMap、Bitmap和Bloom filter等索引和预计算物化。

2.4.1 索引

Doris 提供了丰富的索引结构来加速数据的读取和过滤。包括内置的前缀索引(Short Key Index)、Ordinal 索引、ZoneMap索引以及用户手动创建的Bitmap索引和 Bloom filter索引。其中内置索引是在 Doris 数据写入时自动生成的,无需用户干预。

  • 前缀稀疏索引(Short Key Index)

前缀稀疏索引是建立在排序结构上的一种索引。Doris 存储在文件中的数据,是按照排序列有序存储的,Doris 会在排序数据上每隔1024 行创建一个稀疏索引项。索引的Key即当前这 1024 行中第一行的前缀排序列的值,当用户的查询条件包含这些排序列时,可以通过前缀稀疏索引快速定位到起始行。

  • Ordinal Index

Ordinal lndex索引提供了通过行号来查找Column Data Page数据页的物理地址,Ordinal lndex索引能够将按照列存储的数据按行对齐,可以理解为一级索引。因此,其他类型的索引在查找数据的时候,都要借助Ordinal lndex(一级索引)查找 Data Page数据页的物理地址。

在一个segment文件中,数据始终按照key排序存储,数据写入的过程中,每一列的data page会由Ordinal Index管理,他会记录每一列对应的data page的offset,size大小,和该data page的第一个数据的行号信息。这样在查询的时候,就能通过 Ordinal lndex索引够快速定位到对应的data page的物理地址。

  • ZoneMap 索引

Doris会为Segment文件中的一列数据(key 列)自动添加ZoneMap索引,注意:当表的模型为dupulcate时,会所有字段开启zonemap索引。

ZoneMap索引存储了Segment和每个列对应每个Page的统计信息。Doris可以根据这些统计信息,快速判断这些数据块是否可以过滤掉,从而减少扫描数据量,提升查询速度。统计信息包括了Min最大值、Max最小值、HashNull空值、HasNotNull不全为空的信息。

  • BitMap索引

Doris支持对低基数列创建Bitmap位图索引来加速数据查询。高基数列:例如UserID,低基数列:例如性别,婚姻状态等。

Bitmap位图索引创建时需要通过  create index 进行创建。Bitmap的索引是整个Segment中的Column字段的索引,而不是为每个Page单独生成一份。在写入数据时,会维护一个map结构,去记录下每个key值对应的行号,并采用Roaring位图对rowid进行编码。生成索引数据时,首先写入字典数据,即将map结构的key值写入到DictColumn中。然后,key对应Roaring编码的rowid(value值)以字节方式将数据写入到BitMapColumn。

  • BloomFilter 索引

Doris支持用户对适用于高基数列(取值区分度比较大的字段)添加Bloom Filter(布隆过滤器)索引,Bloom filter索引主要用于快速判断某列中是否存在某个值。BloomFilter判定该列中不存在指定的值,如果确定不存在,就不会读取这个数据文件;如果索引判定该列中存在指定的值,也有可能这个值实际上不会存在,这时,会读取数据文件来进一步确认。

ps:高基数列:例如UserID,低基数列:例如性别,婚姻状态等。

以查询语句为例:select * from user_table where id > 10 and id < 1024;

假设按照 ID 作为建表时指定的 Key, 那么在 Memtable 以及磁盘上按照 ID 有序的方式进行组织,查询时如果过滤条件包含前缀字段时,则可以使用前缀索引快速过滤。Key 查询条件在存储层会被划分为多个 Range,按照前缀索引做二分查找获取到对应的行号范围,由于前缀索引是稀疏的,所以只能大致定位出行的范围。随后过一遍 ZoneMap、Bloom Filter、Bitmap 等索引,进一步缩小需要 Scan 的行数。通过索引,大大减少了需要扫描的行数,减少 CPU 和 IO 的压力,整体大幅提升了系统的并发能力。

2.4.2 物化视图

物化视图是一种典型的空间换时间的思路,其本质是根据预定义的SQL 分析语句执⾏预计算,并将计算结果持久化到另一张对用户透明但有实际存储的表中。在需要同时查询聚合数据和明细数据以及匹配不同前缀索引的场景,命中物化视图时可以获得更快的查询相应,同时也避免了大量的现场计算,因此可以提高性能表现并降低资源消耗。

2.5 向量化查询执行

Doris 实现了向量化查询处理,在执行操作时它可以一次处理数据列的一整块,而不是逐行处理。这样可以大大提高CPU的利用率,降低每个数据点的处理开销。

2.6 Runtime Filter

除了前文提到的用索引来加速过滤查询的数据, Doris 中还额外加入了动态过滤机制,即 Runtime Filter。在多表关联查询时,我们通常将右表称为 BuildTable、左表称为 ProbeTable,左表的数据量会大于右表的数据。在实现上,会首先读取右表的数据,在内存中构建一个 HashTable(Build)。之后开始读取左表的每一行数据,并在 HashTable 中进行连接匹配,来返回符合连接条件的数据(Probe)。而 Runtime Filter 是在右表构建 HashTable 的同时,为连接列生成一个过滤结构,可以是 Min/Max、IN 等过滤条件。之后把这个过滤列结构下推给左表。这样一来,左表就可以利用这个过滤结构,对数据进行过滤,从而减少 Probe 节点(左表)需要传输和比对的数据量。在大多数 Join 场景中,Runtime Filter 可以实现节点的自动穿透,将 Filter 穿透下推到最底层的扫描节点或者分布式 Shuffle Join 中。大多数的关联查询 Runtime Filter 都可以起到大幅减少数据读取的效果,从而加速整个查询的速度。

总结,通过以上一系列优化手段,可以将不必要的数据剪枝掉,减少读取、排序的数据量,显著降低系统 IO、CPU 以及内存资源消耗,从而提升并发。

上文提到的几点优化技术,Doris 实现了单节点上千QPS 的并发支持。但在一些超高并发要求(例如数万 QPS)的 Data Serving 场景中,仍然存在瓶颈:

  • 列式存储引擎对于行级数据的读取不友好,宽表模型上列存格式将放大随机读取 IO;
  • OLAP 数据库的执行引擎和查询优化器对于某些简单的查询(如点查询)来说太重,需要在查询规划中规划短路径来处理此类查询;
  • SQL 请求的接入以及查询 计划的解析与生成由 FE 模块负责,使用的是 Java 语言,在高并发场景下解析和生成大量的查询执行计划会导致高 CPU 开销;

高并发点查询

  1. 行式存储格式(Row Store Format) 

【查询优化】Doris性能优化不要慌,再看看这里!_数据

Apache Doris 支持用户在建表时,通过 store_row_column 表属性另存一份行数据(列存+行存)。在单次检索整行数据时效率更高,减少磁盘访问次数 。

  1. 行存缓存(Row Cache)

【查询优化】Doris性能优化不要慌,再看看这里!_数据_02

Apache Doris 有针对列数据的Page Cache。但如果一行包括多列数据,这类缓存可能会被大查询给刷掉,为了增加缓存命中率、提升点查询的性能,Apache Doris 引入了行存缓存(Row Cache)。

3. 点查询短路径优化(Short-Circuit)

【查询优化】Doris性能优化不要慌,再看看这里!_缓存_03

通常而言,一个查询会在 FE 端进行SQL语句解析、生成执行计划后下发到 BE 进行计算获取结果。但对于高并发点查场景,则不适合这个长流程。

因此,Apache Doris 实现了点查询的短路径优化。当FE接收到此类查询时,会在规划器中生成轻量级的 Short-Circuit Plan,避免生成复杂的 Fragment Plan 并消除了在 MPP 查询框架下执行调度的性能开销。

  1. 预处理语句优化(Prepared Statement)

【查询优化】Doris性能优化不要慌,再看看这里!_性能优化_04

高并发查询中的 CPU 开销可以部分归因于 FE 层分析和解析 SQL 的 CPU 计算,为了解决这个问题,Apache Doris 在 FE 端提供了与 MySQL 协议完全兼容的预处理语句(Prepared Statement)。

通过在 Session 内存 HashMap 中缓存预先计算好的 SQL 和表达式,在后续查询时直接复用缓存对象,避免这些结构在序列化和反序列化时造成CPU热点。

总结

Doris 基于MPP架构、列存、分区分桶、向量化引擎、索引视图等方面实现了高性能并发查询。


在此基础上行式存储格式、点查询短路径优化、预处理语句以及行存缓存等特性实现了实现了单节点上万 QPS 的超高并发。

【查询优化】Doris性能优化不要慌,再看看这里!_高并发_05