[leetcode] 1292. Maximum Side Length of a Square with Sum Less than or Equal to Threshold
原创
©著作权归作者所有:来自51CTO博客作者是念的原创作品,请联系作者获取转载授权,否则将追究法律责任
Description
Given a m x n matrix mat and an integer threshold. Return the maximum side-length of a square with a sum less than or equal to threshold or return 0 if there is no such square.
Example 1:
Input: mat = [[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[1,1,3,2,4,3,2]], threshold = 4
Output: 2
Explanation: The maximum side length of square with sum less than 4 is 2 as shown.
Example 2:
Input: mat = [[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2]], threshold = 1
Output: 0
Example 3:
Input: mat = [[1,1,1,1],[1,0,0,0],[1,0,0,0],[1,0,0,0]], threshold = 6
Output: 3
Example 4:
Input: mat = [[18,70],[61,1],[25,85],[14,40],[11,96],[97,96],[63,45]], threshold = 40184
Output: 2
Constraints:
- 1 <= m, n <= 300
- m == mat.length
- n == mat[i].length
- 0 <= mat[i][j] <= 10000
- 0 <= threshold <= 10^5
分析
题目的意思是:求出构成的正方形且小于阈值的最大正方形,这道题目我也不会,看懂了也不会做,后面发现可以先用dp数组把以当前位置结尾的最大正方形的和求出来,然后再一个一个的遍历找最大的正方形。求和的代码为:
dp[i][j]=mat[i-1][j-1]+dp[i][j-1]+dp[i-1][j]-dp[i-1][j-1]
存放的是以i,j结尾的最大矩形的和。
res=dp[i][j]-dp[i][j-k]-dp[i-k][j]+dp[i-k][j-k]
res存放的是以k为边构成的矩形的和。
代码
class Solution:
def maxSideLength(self, mat: List[List[int]], threshold: int) -> int:
m=len(mat)
n=len(mat[0])
least=min(m,n)
dp=[[0]*(n+1) for i in range(m+1)]
for i in range(1,m+1):
for j in range(1,n+1):
dp[i][j]=mat[i-1][j-1]+dp[i][j-1]+dp[i-1][j]-dp[i-1][j-1]
res=0
for k in range(least,-1,-1):
for i in range(k,m+1):
for j in range(k,n+1):
res=dp[i][j]-dp[i][j-k]-dp[i-k][j]+dp[i-k][j-k]
if(res<=threshold):
return k
return 0
参考文献
[LeetCode] C++ DP solution with comments and example