Description

Given a positive integer N, how many ways can we write it as a sum of consecutive positive integers?

Example 1:

Input: 5
Output: 2
Explanation: 5 = 5 = 2 + 3

Example 2:

Input: 9
Output: 3
Explanation: 9 = 9 = 4 + 5 = 2 + 3 + 4

Example 3:

Input: 15
Output: 4
Explanation: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5

Note: 1 <= N <= 10 ^ 9.

分析

题目的意思是:给定一个数,分解成几个连续自然数的和,求分解方式的数目。

设 x + (x+1) + (x+2)+…+ k terms = N
kx + k*(k-1)/2 = N
kx = N - k*(k-1)/2
N - k*(k-1)/2 > 0 推出
k*(k-1) < 2N
这可以近似的用如下式子表示:
k*k < 2N ==> k < sqrt(2N)

  • 这道题的是leetcode上的hard题目,暴力破解会超时,关键在于数学推导,代码很简洁,我也做不出来,在这里学习一下。

代码

class Solution {
public:
int consecutiveNumbersSum(int N) {
int count=1;
for(int k=2;k<sqrt(2*N);k++){
if((N-(k*(k-1)/2))%k==0) count++;
}
return count;
}
};

参考文献

​[LeetCode] Complex Number Multiplication 复数相乘​