目标:

  • 学习使用Hough变换来查找图像中的圆圈
  • 函数:​​cv.HoughCircles()​

理论

圆圈在数学上表示为 OpenCV-Python Tutorials - 4.14. 霍夫圆变换_OpenCV 其中 OpenCV-Python Tutorials - 4.14. 霍夫圆变换_OpenCV_02是圆的中心,r是圆的半径。从等式中,我们可以看到我们有3个参数,因此我们需要一个用于霍夫变换的3D累加器,这将非常无效。 因此,OpenCV使用更棘手的方法,Hough Gradient Method,它使用边缘的梯度信息。

我们在这里使用的函数是`cv.HoughCircles()。它有很多论据,在文档中有很好的解释。所以我们直接转到代码。

import numpy as np
import cv2 as cv
img = cv.imread('opencv-logo-white.png',0)
img = cv.medianBlur(img,5)
cimg = cv.cvtColor(img,cv.COLOR_GRAY2BGR)
circles = cv.HoughCircles(img,cv.HOUGH_GRADIENT,1,20,
param1=50,param2=30,minRadius=0,maxRadius=0)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
# draw the outer circle
cv.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
cv.imshow('detected circles',cimg)
cv.waitKey(0)
cv.destroyAllWindows()

窗口将如下图显示:

OpenCV-Python Tutorials - 4.14. 霍夫圆变换_ci_03