1)count()函数

返回一个(field)字段中的非空值的数量。

SELECT COUNT(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
计算非空water_level数量
SELECT COUNT(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
计算非空water_level数量
>SELECT COUNT(water_level) FROM h2o_feet
结果
name: h2o_feet
--------------
time                     count
1970-01-01T00:00:00Z     15258

说明 water_level这个字段在 h2o_feet表中共有15258条数据。

注意:聚合函数中如果没有指定时间的话,会默认以 epoch 0 (1970-01-01T00:00:00Z) 作为时间。

可以在where 中加入时间条件,如下:

例子2

计算非空值water_level每4天时间间隔里的数量

SELECT COUNT(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(4d)
SELECT COUNT(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(4d)
结果

结果
name: h2o_feet
--------------
time			 count
2015-08-17T00:00:00Z	 1440
2015-08-21T00:00:00Z	 1920
2015-08-25T00:00:00Z	 1920
2015-08-29T00:00:00Z	 1920
2015-09-02T00:00:00Z	 1915
2015-09-06T00:00:00Z	 1920
2015-09-10T00:00:00Z	 1920
2015-09-14T00:00:00Z	 1920
2015-09-18T00:00:00Z	 335
这样结果中会包含时间结果。

这样结果中会包含时间结果。
COUNT() and controlling the values reported for intervals with no data(控制时间间隔内没有值的返回值)

其他的InfluxQL功能时函数间间隔内没有值返回null值,count()用0。添加  fill(<stuff>)到查询里,用 <stuff>. COUNT(),代替null值返回。用0来代替没有值的间隔数,加入fill(<stuff>)来代替0来输出count()数。c

Example:用  fill(none) to 去除0的间隔输出数量

COUNT()不用 fill(none):

> SELECT COUNT(water_level) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-09-18T21:41:00Z' AND time <= '2015-09-18T22:41:00Z' GROUP BY time(30m)
name: h2o_feet
--------------
time			 count
2015-09-18T21:30:00Z	 1
2015-09-18T22:00:00Z	 0
2015-09-18T22:30:00Z	 0

COUNT() 用 fill(none):

> SELECT COUNT(water_level) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-09-18T21:41:00Z' AND time <= '2015-09-18T22:41:00Z' GROUP BY time(30m) fill(none)
name: h2o_feet
--------------
time			count
2015-09-18T21:30:00Z	 1

For a more general discussion of fill(), see Data Exploration.

2、DISTINCT()函数
返回一个字段(field)的唯一值。

语法:



SELECT DISTINCT(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]



例子1
在level description选择唯一的值

例子1
在level description选择唯一的值
SELECT DISTINCT("level description") FROM h2o_feet
结果

SELECT DISTINCT("level description") FROM h2o_feet
结果
name: h2o_feet
--------------
time			  distinct
1970-01-01T00:00:00Z	 between 6 and 9 feet
1970-01-01T00:00:00Z	 below 3 feet
1970-01-01T00:00:00Z	 between 3 and 6 feet
1970-01-01T00:00:00Z	 at or greater than 9 feet
这个例子显示level description这个字段共有四个值,然后将其显示了出来,时间为默认时间。
注:聚合函数返回的时代0(1970-01-01t00:00:00z)为时间戳,除非您指定一个下界的时间范围。然后返回下界作为时间戳。

例子2
选择唯一的值在leve description 以location 标签分组
SELECT DISTINCT("level description") FROM h2o_feet GROUP BY location
SELECT DISTINCT("level description") FROM h2o_feet GROUP BY location
结果
name: h2o_feet
tags: location=coyote_creek
time			   distinct
----			   --------
1970-01-01T00:00:00Z	  between 6 and 9 feet
1970-01-01T00:00:00Z	  between 3 and 6 feet
1970-01-01T00:00:00Z	  below 3 feet
1970-01-01T00:00:00Z	  at or greater than 9 feet


name: h2o_feet
tags: location=santa_monica
time			   distinct
----			   --------
1970-01-01T00:00:00Z	  below 3 feet
1970-01-01T00:00:00Z	  between 3 and 6 feet
1970-01-01T00:00:00Z	  between 6 and 9 feet
SELECT COUNT(DISTINCT("level description")) FROM h2o_feet GROUP BY location
SELECT COUNT(DISTINCT("level description")) FROM h2o_feet GROUP BY location
结果
name: h2o_feet
tags: location = coyote_creek
time			count
----			 -----
1970-01-01T00:00:00Z	 4

name: h2o_feet
tags: location = santa_monica
time			count
----			 -----
1970-01-01T00:00:00Z	 3
3)MEAN() 函数

返回一个字段(field)中的值的算术平均值(平均值)。字段类型必须是长整型或float64。

语法格式

SELECT MEAN(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
计算water_level的平均值

SELECT MEAN(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
计算water_level的平均值
SELECT MEAN(water_level) FROM h2o_feet
结果
SELECT MEAN(water_level) FROM h2o_feet
name: h2o_feet
--------------
time			  mean
1970-01-01T00:00:00Z	 4.286791371454075

  说明water_level字段的平均值为4.286791371454075

时间为默认时间,当然,你也可以加入where条件。

注意:

聚合函数返回的时代0(1970-01-01t00:00:00z)为时间戳,除非您指定一个下界的时间范围。然后他们返回下界的时间戳。
在float64点同一套执行mean()可能会产生稍微不同的结果。
InfluxDB之前不适用的功能,结果在那些小差异排序分。

例子2、计算wate_level以4天为间隔的平均值

例子2、计算wate_level以4天为间隔的平均值
SELECT MEAN(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(4d)
SELECT MEAN(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(4d)
结果

结果
name: h2o_feet
--------------
time			   mean
2015-08-17T00:00:00Z	 4.322029861111125
2015-08-21T00:00:00Z	 4.251395512375667
2015-08-25T00:00:00Z	 4.285036458333324
2015-08-29T00:00:00Z	 4.469495801899061
2015-09-02T00:00:00Z	 4.382785378590083
2015-09-06T00:00:00Z	 4.28849666349042
2015-09-10T00:00:00Z	 4.658127604166656
2015-09-14T00:00:00Z	 4.763504687500006
2015-09-18T00:00:00Z	 4.232829850746268
4、MEDIAN()函数

从单个字段(field)中的排序值返回中间值(中位数)。中值是在一组数值中居于中间的数值。字段值的类型必须是长整型或float64格式。

语法:

SELECT MEDIAN(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
SELECT MEDIAN(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
注:median()几乎相当于PERCENTILE(field_key, 50),如果参数集合中包含偶数个数字,函数 MEDIAN 将返回位于中间的两个数的平均值。
中值 中值是一组数中间位置的数;即一半数的值比中值大,另一半数的值比中值小。例如,2、3、3、5、7 和 10 的中值是 4
例子1
选择water_level的中间值
注:median()几乎相当于PERCENTILE(field_key, 50),如果参数集合中包含偶数个数字,函数 MEDIAN 将返回位于中间的两个数的平均值。
中值 中值是一组数中间位置的数;即一半数的值比中值大,另一半数的值比中值小。例如,2、3、3、5、7 和 10 的中值是 4
例子1
选择water_level的中间值
PERCENTILE(field_key, 50)
SELECT MEDIAN(water_level) from h2o_feet
SELECT MEDIAN(water_level) from h2o_feet
结果

结果
name: h2o_feet
--------------
time			 median
1970-01-01T00:00:00Z	 4.124
解释:
说明表中 water_level字段的中位数是 4.124
注:聚合函数返回的时代0(1970-01-01t00:00:00z)为时间戳,除非您指定一个下界的时间范围。然后返回下界作为时间戳。 
注:聚合函数返回的时代0(1970-01-01t00:00:00z)为时间戳,除非您指定一个下界的时间范围。然后返回下界作为时间戳。
例子2
选择时间在2015年8月18日和8月18日30分,以location分组water_level的中间值
SELECT MEDIAN(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY location
例子2
选择时间在2015年8月18日和8月18日30分,以location分组water_level的中间值
SELECT MEDIAN(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY location
结果
name: h2o_feet
tags: location = coyote_creek
time			 median
----			 ------
2015-08-18T00:00:00Z	 7.8245

name: h2o_feet
tags: location = santa_monica
time			 median
----			 ------
2015-08-18T00:00:00Z	 2.0575
5)SPREAD()函数
返回字段的最小值和最大值之间的差值。数据的类型必须是长整型或float64。
语法
SELECT SPREAD(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
SELECT SPREAD(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
计算water_level的最小值 与最大值 之间差
SELECT SPREAD(water_level) FROM h2o_feet
结果
SELECT SPREAD(water_level) FROM h2o_feet
name: h2o_feet
--------------
time			 spread
1970-01-01T00:00:00Z	  10.574
注意:

聚合函数返回的时代0(1970-01-01t00:00:00z)为时间戳,除非您指定一个下界的时间范围。然后他们回到下界的时间戳。
在float64点同一套执行spread()可能会产生稍微不同的结果。InfluxDB之前不适用的功能,结果在那些小差异排序分。

例子2
计算water_level的最小值 与最大值差,以30分钟间隔,指定location为santa_monica,和一个时间范围
santa_monica,和一个时间范围
SELECT SPREAD(water_level) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-09-18T17:00:00Z' AND time < '2015-09-18T20:30:00Z' GROUP BY time(30m)
结果
SELECT SPREAD(water_level) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-09-18T17:00:00Z' AND time < '2015-09-18T20:30:00Z' GROUP BY time(30m)
name: h2o_feet
--------------
time			                spread
2015-09-18T17:00:00Z	  0.16699999999999982
2015-09-18T17:30:00Z	  0.5469999999999997
2015-09-18T18:00:00Z	  0.47499999999999964
2015-09-18T18:30:00Z	  0.2560000000000002
2015-09-18T19:00:00Z	  0.23899999999999988
2015-09-18T19:30:00Z	  0.1609999999999996
2015-09-18T20:00:00Z	  0.16800000000000015
6)SUM()函数

返回一个字段中的所有值的和。字段的类型必须是长整型或float64。

语法:

SELECT SUM(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
SELECT SUM(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
计算water_level的所有值的和

例子1
计算water_level的所有值的和
SELECT SUM(water_level) FROM h2o_feet
SELECT SUM(water_level) FROM h2o_feet
结果

 结果
name: h2o_feet
--------------
time			  sum
1970-01-01T00:00:00Z	 67777.66900000002
注意:

注意:

聚合函数返回的时代0(1970-01-01t00:00:00z)为时间戳,除非您指定一个下界的时间范围。然后他们回到下界的时间戳。
在float64点同一套执行sum()可能会产生稍微不同的结果。InfluxDB之前不适用的功能,结果在那些小差异排序分。

例子2 

计算以5天为分组,water_level的和

SELECT SUM(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(5d)

结果:
SELECT SUM(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(5d)
--------------
time			 sum
2015-08-18T00:00:00Z	 10334.908999999983
2015-08-23T00:00:00Z	 10113.356999999995
2015-08-28T00:00:00Z	 10663.683000000006
2015-09-02T00:00:00Z	 10451.321
2015-09-07T00:00:00Z	 10871.817999999994
2015-09-12T00:00:00Z	 11459.00099999999
2015-09-17T00:00:00Z	 3627.762000000003
nearly equivalent
7)INTEGRAL()函数

返回曲线

语法:

SELECT INTEGRAL( [ * | <field_key> | /<regular_expression>/ ] [ , <unit> ]  ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
8) STDDEV