B-Tree

既然红黑树存在缺点,那么我们可以在红黑树的基础上构思一种新的储存结构。解决的思路也很简单,既然觉得树的深度太长,就只需要适当地增加每个树节点能存储的数据个数即可,但是数据个数也必须要设定一个合理的阈值,不然一个节点数据个数过多会产生多余的消耗。

按照这样的思路,我们先来了解下关于B-Tree的一些知识点:

  • 度(Degree)-节点的数据存储个数,每个树节点中数据个数大于 15/16*Degree(未验证) 时会自动分裂,调整结构
  • 叶节点具有相同的深度,左子树跟右子树的深度一致
  • 叶节点的指针为空
  • 节点中的数据key从左到右递增排列


B+树索优点

1、 B+树的磁盘读写代价更低:B+树的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对B树更小,如果把所有同一内部节点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多,一次性读入内存的需要查找的关键字也就越多,相对IO读写次数就降低了。

2、B+树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

3、由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,所以通常B+树用于数据库索引。