ax.set_xticklabels(labels,rotation=120) # 旋标签,避免标签重叠覆盖

label翻的实现,在输出到页面之前,使用:fig.autofmt_xdate() 或者 ax.set_xticklabels(group_labels, rotation=120)    rotation就是翻转的角度


# -*- coding: gbk -*-

import numpy as np

import matplotlib.pyplot as plt

import matplotlib as mpl


def draw_pie(labels,quants):

    # make a square figure

    plt.figure(1, figsize=(6,6))

    # For China, make the piece explode a bit

    expl = [0,0.1,0,0,0,0,0,0,0,0]

    # Colors used. Recycle if not enough.

    colors  = ["blue","red","coral","green","yellow","orange"]

    # Pie Plot

    # autopct: format of "percent" string;

    plt.pie(quants, explode=expl, colors=colors, labels=labels, autopct='%1.1f%%',pctdistance=0.8, shadow=True)

    plt.title('Top 10 GDP Countries', bbox={'facecolor':'0.8', 'pad':5})

    plt.show()

def draw_bar(labels,quants):

    width = 0.4

    ind = np.linspace(0.5,9.5,10)

    # make a square figure

    fig = plt.figure(1)

    ax  = fig.add_subplot(111)

    # Bar Plot

    ax.bar(ind-width/2,quants,width,color='green')

    # Set the ticks on x-axis

    ax.set_xticks(ind)

    ax.set_xticklabels(labels,rotation=120) # 旋标签,避免标签重叠覆盖

    # labels

    ax.set_xlabel('Country')

    ax.set_ylabel('GDP (Billion US dollar)')

    # title

    ax.set_title('Top 10 GDP Countries', bbox={'facecolor':'0.8', 'pad':5})

    plt.grid(True)

    plt.show()

def draw_line(labels,quants):

    ind = np.linspace(0,9,10)

    fig = plt.figure(1)

    ax  = fig.add_subplot(111)

    ax.plot(ind,quants)

    ax.set_title('Top 10 GDP Countries', bbox={'facecolor':'0.8', 'pad':5})

    ax.set_xticklabels(labels)

    plt.grid(True)

    plt.show()

# quants: GDP

# labels: country name

labels   = ['USA', 'China', 'India', 'Japan', 'Germany', 'Russia', 'Brazil', 'UK', 'France', 'Italy']

quants   = [15094025.0, 11299967.0, 4457784.0, 4440376.0, 3099080.0, 2383402.0, 2293954.0, 2260803.0, 2217900.0,1846950.0]

draw_pie(labels,quants)

#draw_bar(labels,quants)

#draw_line(labels,quants)


DataFrame.plot( )函数

DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, 

                sharex=None, sharey=False, layout=None,figsize=None, 

                use_index=True, title=None, grid=None, legend=True, 

                style=None, logx=False, logy=False, loglog=False, 

                xticks=None, yticks=None, xlim=None, ylim=None, rot=None,

                xerr=None,secondary_y=False, sort_columns=False, **kwds)


参数详解如下:

Parameters:

x : label or position, default None#指数据框列的标签或位置参数

y : label or position, default None

kind : str

‘line’ : line plot (default)#折线图

‘bar’ : vertical bar plot#条形图

‘barh’ : horizontal bar plot#横向条形图

‘hist’ : histogram#柱状图

‘box’ : boxplot#箱线图

‘kde’ : Kernel Density Estimation plot#Kernel 的密度估计图,主要对柱状图添加Kernel 概率密度线

‘density’ : same as ‘kde’

‘area’ : area plot#不了解此图

‘pie’ : pie plot#饼图

‘scatter’ : scatter plot#散点图  需要传入columns方向的索引

‘hexbin’ : hexbin plot#不了解此图

ax : matplotlib axes object, default None#**子图(axes, 也可以理解成坐标轴) 要在其上进行绘制的matplotlib subplot对象。如果没有设置,则使用当前matplotlib subplot**其中,变量和函数通过改变figure和axes中的元素(例如:title,label,点和线等等)一起描述figure和axes,也就是在画布上绘图。

subplots : boolean, default False#判断图片中是否有子图

Make separate subplots for each column

sharex : boolean, default True if ax is None else False#如果有子图,子图共x轴刻度,标签

In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure!

sharey : boolean, default False#如果有子图,子图共y轴刻度,标签

In case subplots=True, share y axis and set some y axis labels to invisible

layout : tuple (optional)#子图的行列布局

(rows, columns) for the layout of subplots

figsize : a tuple (width, height) in inches#图片尺寸大小

use_index : boolean, default True#默认用索引做x轴

Use index as ticks for x axis

title : string#图片的标题用字符串

Title to use for the plot

grid : boolean, default None (matlab style default)#图片是否有网格

Axis grid lines

legend : False/True/’reverse’#子图的图例,添加一个subplot图例(默认为True)

Place legend on axis subplots

style : list or dict#对每列折线图设置线的类型

matplotlib line style per column

logx : boolean, default False#设置x轴刻度是否取对数

Use log scaling on x axis

logy : boolean, default False

Use log scaling on y axis

loglog : boolean, default False#同时设置x,y轴刻度是否取对数

Use log scaling on both x and y axes

xticks : sequence#设置x轴刻度值,序列形式(比如列表)

Values to use for the xticks

yticks : sequence#设置y轴刻度,序列形式(比如列表)

Values to use for the yticks

xlim : 2-tuple/list#设置坐标轴的范围,列表或元组形式

ylim : 2-tuple/list

rot : int, default None#设置轴标签(轴刻度)的显示旋度数

Rotation for ticks (xticks for vertical, yticks for horizontal plots)

fontsize : int, default None#设置轴刻度的字体大小

Font size for xticks and yticks

colormap : str or matplotlib colormap object, default None#设置图的区域颜色

Colormap to select colors from. If string, load colormap with that name from matplotlib.

colorbar : boolean, optional  #图片柱子

If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)

position : float   

Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

layout : tuple (optional)  #布局

(rows, columns) for the layout of the plot

table : boolean, Series or DataFrame, default False  #如果为正,则选择DataFrame类型的数据并且换匹配matplotlib的布局。

If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.

yerr : DataFrame, Series, array-like, dict and str

See Plotting with Error Bars for detail.

xerr : same types as yerr.

stacked : boolean, default False in line and

bar plots, and True in area plot. If True, create stacked plot.

sort_columns : boolean, default False  # 以字母表顺序绘制各列,默认使用前列顺序

secondary_y : boolean or sequence, default False  ##设置第二个y轴(右y轴)

Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis

mark_right : boolean, default True

When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend

kwds : keywords

Options to pass to matplotlib plotting method

Returns:axes : matplotlib.AxesSubplot or np.array of them