最短路径问题

用d(i,j)表示节点i到节点j的最短路径,w(i,j)表示节点i到节点j的权重;
对于n个节点的图,采用邻接矩阵的方式输入输出,输出及中间结果的矩阵也是n*n的矩阵,第i行j列表示从i到j的当前最短路径

矩阵乘法的动态规划

适用条件:
没有负环(可有负权重)

步骤:

1.分析最优解的结构 (最短路径结构)
根据最短路径的最优子结构性质,有d(i,j) = d(i,k) + w(k,j)

2.递归定义最优解的值
(所有节点对最短路径问题的递归解)
首先要获取递归求解的对象表达式

这里采取最短路径的边数作为递归的计数对象,因为图中没有负环,所以对于边数大于n-1的最短路径计算也就没有意义(因为n-1条边已经能够将所有节点连接,一旦大于n-1条边则会形成环,并且所有的环都是正权重,所以会使结果变大),因此我们递归时控制边数m使其m>0 && m < n。m=1时,即为输入的邻接矩阵M。

在递归时,我们计算边数为m的最短路径时,将m-1的最短路径与d(i,j) = d(i,k) + w(k,j)进行比较,取最小值。因为k=j时,即为m-1的最短路径,因此问题简化为循环遍历k求d(i,j) = d(i,k) + w(k,j)的最小值。如下图公式:

单元最短路径问题Java 最短路径问题java 动态规划_递归

3.自底向上计算最优解的值
(自底向上计算最短路径权重)
因为含有m条边的距离是在m-1条边的基础上计算出来的,所以从含有一条边开始,自底向上求值,按照第二步所述编写代码,详见具体代码。

4.从计算出的最优解的值上构建最优解
按照正常步骤,按部就班的每次递归m++;这样最终的时间复杂度为O(n^4)。但我们要的只是m=n-1的结果,而对中间步骤不感兴趣,所以我们可以使m每次增加一倍,m>n-1时的结果与n-1时结果相同,最终被压缩到O(n3*lgn).

具体代码
import java.util.Scanner;

public class Dynamic_ShortestPath {
    private static final int INFINITE = 1000000;

    public static void main(String[] args) {
        int[][] matrix = initialize();
        print(getShortestPath(matrix));
    }

    public static int[][] initialize(){
        Scanner input = new Scanner(System.in);
        System.out.print("Please enter the size of the matrix:");
        int n = input.nextInt();
        System.out.println("Please enter the elements of the matrix:");
        int[][] data = new int[n][n];
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                data[i][j] = input.nextInt();
        return data;
    }

    public static int[][] extendPath(int[][] matrix){
        int[][] newmatrix = new int[matrix.length][matrix.length];
        for(int i=0;i<matrix.length;++i)
            for(int j=0;j<matrix.length;++j){
                newmatrix[i][j]=INFINITE;
                for(int k=0;k<matrix.length;++k)
                    if(matrix[i][k] + matrix[k][j] < newmatrix[i][j]){
                        newmatrix[i][j] = matrix[i][k] + matrix[k][j];
                    }
            }
        return newmatrix;
    }

    public static int[][] getShortestPath(int[][] matrix){
        int m = matrix.length;
        int i = 1;
        while(i<m-1){
            matrix = extendPath(matrix);
            m*=2;
        }
        return matrix;
    }

    public static void print(int[][] matrix){
        for(int i=0;i<matrix.length;i++)
            for(int j=0;j<matrix.length;j++){
                //if(matrix[i][j]!=INFINITE && i!=j) {
                if(i!=j) {
                    System.out.println("From " + i + " to " + j + " the cost is " + matrix[i][j]);
                }
            }
    }
}
实验结果

输入:(取自算法书P134)

Please enter the size of the matrix:5
Please enter the elements of the matrix:
0 3 8 1000000 -5 
1000000 0 1000000 1 7 
1000000 4 0 1000000 3
2 1000000 -4 0 1000000
1000000 1000000 1000000 6 0

输出:

From 0 to 1 the cost is 1
From 0 to 2 the cost is -3
From 0 to 3 the cost is 1
From 0 to 4 the cost is -5
From 1 to 0 the cost is 3
From 1 to 2 the cost is -3
From 1 to 3 the cost is 1
From 1 to 4 the cost is -2
From 2 to 0 the cost is 7
From 2 to 1 the cost is 4
From 2 to 3 the cost is 5
From 2 to 4 the cost is 2
From 3 to 0 the cost is 2
From 3 to 1 the cost is 0
From 3 to 2 the cost is -4
From 3 to 4 the cost is -3
From 4 to 0 the cost is 8
From 4 to 1 the cost is 6
From 4 to 2 the cost is 2
From 4 to 3 the cost is 6

Process finished with exit code 0

FloydWarshall算法

适用条件:
没有负环(可有负权重)

原理讲解:

warshall时间复杂度可以达到O(V^3),而warshall算法的实现基于以下现象的观察:

对于中间节点取自(1,2,3,…,k)的最短路径,它是由中间节点取自(1,2,3,…,k-1)的最短路径构成的。

得到以下递归式:

单元最短路径问题Java 最短路径问题java 动态规划_最短路径_02

算法步骤:

1.初始化存储权重的矩阵和前驱结点矩阵
2.自底向上进行动态规划,k从0到matrix.length,判断if(matrix[i][k] + matrix[k][j] < matrix[i][j])来创建新的数据矩阵和前驱矩阵
3.根据遍历完的结果,输出答案。

具体代码
import java.util.Scanner;
public class FloydWarshall {
        private static final int INFINITE = 1000000000;
        public static void main(String[] args){
            int[][] matrix = initialize();
            int[][] parent = new int[matrix.length][matrix.length];
            for(int i = 0; i < parent.length; ++i)
                for(int j = 0; j < parent.length; ++j){
                    if(i == j)
                        parent[i][j] = 0;
                    else{
                        if(matrix[i][j] != INFINITE)
                            parent[i][j] = i;
                        else
                            parent[i][j] = -1;
                    }
                }
            printPath(floyd_warshall(matrix,parent),parent);
        }

        public static int[][] initialize(){
            Scanner input = new Scanner(System.in);
            System.out.print("Please enter the size of the matrix:");
            int n = input.nextInt();
            System.out.println("Please enter the elements of the matrix:");
            int[][] data = new int[n][n];
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                    data[i][j] = input.nextInt();
            return data;
        }

        public static int[][] floyd_warshall(int[][] matrix,int[][] parent){
            for(int k = 0; k < matrix.length; ++k){
                int[][] newMatrix = new int[matrix.length][matrix.length];
                int[][] newParent = new int[parent.length][parent.length];
                for(int i = 0; i < matrix.length; ++i)
                    for(int j = 0; j < matrix.length; ++j){
                        if(matrix[i][k] + matrix[k][j] < matrix[i][j]){
                            newMatrix[i][j] = matrix[i][k] + matrix[k][j];
                            newParent[i][j] = parent[k][j];
                        }else{
                            newMatrix[i][j] = matrix[i][j];
                            newParent[i][j] = parent[i][j];
                        }
                    }
                matrix = newMatrix;
                for(int m = 0; m < parent.length; ++m)
                    for(int n = 0; n < parent.length; ++n)
                        parent[m][n] = newParent[m][n];
            }
            return matrix;
        }

        public static void printPath(int[][] matrix,int[][] parent){
            for(int i = 0; i < matrix.length; ++i)
                for(int j = 0; j < matrix.length; ++j){
                    if(matrix[i][j] != INFINITE && i != j){
                        System.out.print("From " + i + " to " + j + " the cost is:" + matrix[i][j]
                                + "\nThe path is: " + j +" ");
                        int temp = j;
                        while((temp = parent[i][temp]) != i)
                            System.out.print("<< " + temp + " ");
                        System.out.println("<< " + i + " ");
                    }
                }
        }
}
实验结果

输入:

Please enter the size of the matrix:5
Please enter the elements of the matrix:
0 3 8 1000000 -5 
1000000 0 1000000 1 7 
1000000 4 0 1000000 3
2 1000000 -4 0 1000000
1000000 1000000 1000000 6 0

输出:

From 0 to 1 the cost is:1
The path is: 1 << 2 << 3 << 4 << 0 
From 0 to 2 the cost is:-3
The path is: 2 << 3 << 4 << 0 
From 0 to 3 the cost is:1
The path is: 3 << 4 << 0 
From 0 to 4 the cost is:-5
The path is: 4 << 0 
From 1 to 0 the cost is:3
The path is: 0 << 3 << 1 
From 1 to 2 the cost is:-3
The path is: 2 << 3 << 1 
From 1 to 3 the cost is:1
The path is: 3 << 1 
From 1 to 4 the cost is:-2
The path is: 4 << 0 << 3 << 1 
From 2 to 0 the cost is:7
The path is: 0 << 3 << 1 << 2 
From 2 to 1 the cost is:4
The path is: 1 << 2 
From 2 to 3 the cost is:5
The path is: 3 << 1 << 2 
From 2 to 4 the cost is:2
The path is: 4 << 0 << 3 << 1 << 2 
From 3 to 0 the cost is:2
The path is: 0 << 3 
From 3 to 1 the cost is:0
The path is: 1 << 2 << 3 
From 3 to 2 the cost is:-4
The path is: 2 << 3 
From 3 to 4 the cost is:-3
The path is: 4 << 0 << 3 
From 4 to 0 the cost is:8
The path is: 0 << 3 << 4 
From 4 to 1 the cost is:6
The path is: 1 << 2 << 3 << 4 
From 4 to 2 the cost is:2
The path is: 2 << 3 << 4 
From 4 to 3 the cost is:6
The path is: 3 << 4