数据类型为左流 FlinkClick(userid=gk01, click=Pay, ctime=2020-12-14 09:55:00.000) ; 右流为 FlinkPay(userid=gk01, payway=alipy, ptime=2020-12-14 09:58:00.000)

join的这段代码如下

clickOut.keyBy(t->t.getUserid())
                .intervalJoin(payOunt.keyBy(t->t.getUserid()))
                .between(Time.minutes(1),Time.minutes(5))
                .lowerBoundExclusive()    //默认是闭区间,这样就变成了开区间
                .upperBoundExclusive()
                .process(new ProcessJoinFunction<FlinkClick, FlinkPay, String>() {
                    @Override
                    public void processElement(FlinkClick left, FlinkPay right, Context ctx, Collector<String> out) throws Exception {

                        out.collect(StringUtils.join(Arrays.asList(
                                left.getUserid(),
                                left.getClick(),
                                right.getPayway()

                        ),'\t'));
                    }
                }).print().setParallelism(1);

 

一:watermark生成规则:

     watermark的计算为 min(ctime,ptime)-watermark (watermark为左右流定义的乱序时间,我这里设置的0),贴出其中一个流的demo,注意watermark

env
                .addSource(payConsumer).map(new MapFunction<String, FlinkPay>() {
                    @Override
                    public FlinkPay map(String pv) throws Exception {
                        JSONObject clickObject = JSONObject.parseObject(pv);
                        String userid = clickObject.getString("userid");
                        String payway = clickObject.getString("payway");
                        String ptime = clickObject.getString("ptime");
                        FlinkPay payO = new FlinkPay(userid, payway, ptime);
                        return payO;
                    }
                }).assignTimestampsAndWatermarks(
                        WatermarkStrategy.<FlinkPay>forBoundedOutOfOrderness(Duration.ZERO)   //watermark时间
                                .withTimestampAssigner(new SerializableTimestampAssigner<FlinkPay>() {
                                                           @Override
                                                           public long extractTimestamp(FlinkPay element, long recordTimestamp) {
                                                               Date dateP = new Date();
                                                               try {
                                                                   System.out.println(element);
                                                                   dateP = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").parse(element.getPtime());
                                                               } catch (ParseException e) {
                                                                   e.printStackTrace();
                                                               }
//                                                        System.out.println(dateP.getTime());
                                                               return dateP.getTime();
                                                           }
                                                       }

                                ));

二:状态清理机制

贴上几段源码,均在  IntervalJoinOperator 类中

 

private transient MapState<Long, List<BufferEntry<T1>>> leftBuffer;
private transient MapState<Long, List<BufferEntry<T2>>> rightBuffer;

@Override
public void initializeState(StateInitializationContext context) throws Exception {
    super.initializeState(context);
    this.leftBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(
        LEFT_BUFFER,
        LongSerializer.INSTANCE,
        new ListSerializer<>(new BufferEntrySerializer<>(leftTypeSerializer))
    ));
    this.rightBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(
        RIGHT_BUFFER,
        LongSerializer.INSTANCE,
        new ListSerializer<>(new BufferEntrySerializer<>(rightTypeSerializer))
    ));
}

在IntervalJoinOperator中,会利用两个MapState分别缓存左流和右流的数据。其中,Long表示时间时间戳,List<BufferEntry<T>>表示该时刻到来的数据记录,当左流和右流有数据到达时,会分别调用processElement1()和processElement2()方法,它们都调用了processElement()方法

 

 

@Override
	public void processElement1(StreamRecord<T1> record) throws Exception {
		processElement(record, leftBuffer, rightBuffer, lowerBound, upperBound, true);
	} 

@Override
	public void processElement2(StreamRecord<T2> record) throws Exception {
		processElement(record, rightBuffer, leftBuffer, -upperBound, -lowerBound, false);
	}


private <THIS, OTHER> void processElement(
			final StreamRecord<THIS> record,
			final MapState<Long, List<IntervalJoinOperator.BufferEntry<THIS>>> ourBuffer,
			final MapState<Long, List<IntervalJoinOperator.BufferEntry<OTHER>>> otherBuffer,
			final long relativeLowerBound,
			final long relativeUpperBound,
			final boolean isLeft) throws Exception {

		final THIS ourValue = record.getValue();
		final long ourTimestamp = record.getTimestamp();

		if (ourTimestamp == Long.MIN_VALUE) {
			throw new FlinkException("Long.MIN_VALUE timestamp: Elements used in " +
					"interval stream joins need to have timestamps meaningful timestamps.");
		}

		if (isLate(ourTimestamp)) {
			return;
		}

		addToBuffer(ourBuffer, ourValue, ourTimestamp);

		for (Map.Entry<Long, List<BufferEntry<OTHER>>> bucket: otherBuffer.entries()) {
			final long timestamp  = bucket.getKey();

			if (timestamp < ourTimestamp + relativeLowerBound ||
					timestamp > ourTimestamp + relativeUpperBound) {
				continue;
			}

			for (BufferEntry<OTHER> entry: bucket.getValue()) {
				if (isLeft) {
					collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp);
				} else {
					collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp);
				}
			}
		}

		long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;
		if (isLeft) {
			internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime);
		} else {
			internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime);
		}
	}

代码最后调用TimerService.registerEventTimeTimer(),注册时间戳为timestamp+relativeUpperBound的定时器,该定时器负责在水印超过区间的上界时执行状态的清理逻辑,防止数据堆积。注意左右流的定时器所属的namespace是不同的,具体逻辑位于onEventTime()方法中

@Override
	public void onEventTime(InternalTimer<K, String> timer) throws Exception {

		long timerTimestamp = timer.getTimestamp();
		String namespace = timer.getNamespace();

		logger.trace("onEventTime @ {}", timerTimestamp);

		switch (namespace) {
			case CLEANUP_NAMESPACE_LEFT: {
				long timestamp = (upperBound <= 0L) ? timerTimestamp : timerTimestamp - upperBound;
				logger.trace("Removing from left buffer @ {}", timestamp);
				leftBuffer.remove(timestamp);
				break;
			}
			case CLEANUP_NAMESPACE_RIGHT: {
				long timestamp = (lowerBound <= 0L) ? timerTimestamp + lowerBound : timerTimestamp;
				logger.trace("Removing from right buffer @ {}", timestamp);
				rightBuffer.remove(timestamp);
				break;
			}
			default:
				throw new RuntimeException("Invalid namespace " + namespace);
		}
	}

先把测试数据及结果贴在这里

id

左流数据时间戳(ctime)

右流数据时间戳(ptime)

左流清理时间

右侧清理时间

1

2020-12-14 01:55:00.000


2020-12-14 02:00:00.000

 

2


2020-12-14 01:55:00.000

 

2020-12-14 01:55:00.000

对这个结果说明一下:

我们在自己的代码里设置了:.between(Time.minutes(1),Time.minutes(5)) 

上述源码中有这一行

long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;

从这里我们就可以计算左右流的清理时间了:

当左流数据进来时,(lowerBound, upperBound) 为 (1 ,5) ,当右流数据进来时,(lowerBound, upperBound) 为 (-5 ,-1),其实就是   left+1min <  right  <left+5min ,反过来就是 right  -5min <  left <right -1min

2020-12-14 01:55:00.000 的左侧数据进来,upperBound大于0,cleanupTime = 时间戳+5min 即等于2020-12-14 02:00:00.000;这是因为,当右侧流在2020-12-14 02:00:00.000需要查找左侧流的数据时间为 [2020-12-14 01:55:00.000,2020-12-14 01:59:00.000],所以watermark> 2020-12-14 02:00:00.000 时可以清除2020-12-14 01:55:00.000的数据

2020-12-14 01:55:00.000的右侧数据进来,upperBound小于0,clearnupTime = 时间戳,即等于 2020-12-14 01:55:00.000;这是因为,左侧数据流在 2020-12-14 01:55:00.000时,需要查找的右侧流时间戳范围 [2020-12-14 01:56:00.000, 2020-12-14 02:00:00.000],所以当watermark达到2020-12-14 01:55:00.000时 可以清除 2020-12-14 01:55:00.000 的数据