183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程

 

最近看了新周刊的一篇推送,有关地铁名字的分析,链接如下。

 

我们分析了3447个地铁站,发现了中国城市地名的秘密

 

于是乎也想着自己去获取数据,然后进行分析一番。

 

当然分析水平不可能和他们的相比,毕竟文笔摆在那里,也就那点水平。

 

大家看着乐呵就好,能提高的估摸着也就只有数据的准确性啦。

 

文中所用到的地铁站数据并没有去重,对于换乘站,含有大量重复。

 

即使作者一直在强调换乘站占比很小,影响不是很大。

 

但于我而言,去除重复数据还是比较简单的。

 

然后照着人家的路子去分析,多学习一下。

 

 

/ 01 / 获取分析

 

地铁信息获取从高德地图上获取。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_02

 

上面主要获取城市的「id」,「cityname」及「名称」。

 

用于拼接请求网址,进而获取地铁线路的具体信息。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_03

 

找到请求信息,获取各个城市的地铁线路以及线路中站点详情。

 

 

/ 02 / 数据获取

 

具体代码如下。

 

 

 

import json
import requests
from bs4 import BeautifulSoup

headers = {'user-agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'}


def get_message(ID, cityname, name):
    """
    地铁线路信息获取
    """
    url = 'http://map.amap.com/service/subway?_1555502190153&srhdata=' + ID + '_drw_' + cityname + '.json'
    response = requests.get(url=url, headers=headers)
    html = response.text
    result = json.loads(html)
    for i in result['l']:
        for j in i['st']:
            # 判断是否含有地铁分线
            if len(i['la']) > 0:
                print(name, i['ln'] + '(' + i['la'] + ')', j['n'])
                with open('subway.csv', 'a+', encoding='gbk') as f:
                    f.write(name + ',' + i['ln'] + '(' + i['la'] + ')' + ',' + j['n'] + '\n')
            else:
                print(name, i['ln'], j['n'])
                with open('subway.csv', 'a+', encoding='gbk') as f:
                    f.write(name + ',' + i['ln'] + ',' + j['n'] + '\n')


def get_city():
    """
    城市信息获取
    """
    url = 'http://map.amap.com/subway/index.html?&1100'
    response = requests.get(url=url, headers=headers)
    html = response.text
    # 编码
    html = html.encode('ISO-8859-1')
    html = html.decode('utf-8')
    soup = BeautifulSoup(html, 'lxml')
    # 城市列表
    res1 = soup.find_all(class_="city-list fl")[0]
    res2 = soup.find_all(class_="more-city-list")[0]
    for i in res1.find_all('a'):
        # 城市ID值
        ID = i['id']
        # 城市拼音名
        cityname = i['cityname']
        # 城市名
        name = i.get_text()
        get_message(ID, cityname, name)
    for i in res2.find_all('a'):
        # 城市ID值
        ID = i['id']
        # 城市拼音名
        cityname = i['cityname']
        # 城市名
        name = i.get_text()
        get_message(ID, cityname, name)


if __name__ == '__main__':
    get_city()

 

最后成功获取数据。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_04

 

包含换乘站数据,一共3541个地铁站点。

 

 

/ 03 /  数据可视化

 

先对数据进行清洗,去除重复的换乘站信息。

 

 

 

from wordcloud import WordCloud, ImageColorGenerator
from pyecharts import Line, Bar
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import jieba

# 设置列名与数据对齐
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
# 显示10行
pd.set_option('display.max_rows', 10)
# 读取数据
df = pd.read_csv('subway.csv', header=None, names=['city', 'line', 'station'], encoding='gbk')
# 各个城市地铁线路情况
df_line = df.groupby(['city', 'line']).count().reset_index()
print(df_line)

 

通过城市及地铁线路进行分组,得到全国地铁线路总数。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_05

 

一共183条地铁线路。

 

 

 

def create_map(df):
    # 绘制地图
    value = [i for i in df['line']]
    attr = [i for i in df['city']]
    geo = Geo("已开通地铁城市分布情况", title_pos='center', title_top='0', width=800, height=400, title_color="#fff", background_color="#404a59", )
    geo.add("", attr, value, is_visualmap=True, visual_range=[0, 25], visual_text_color="#fff", symbol_size=15)
    geo.render("已开通地铁城市分布情况.html")


def create_line(df):
    """
    生成城市地铁线路数量分布情况
    """
    title_len = df['line']
    bins = [0, 5, 10, 15, 20, 25]
    level = ['0-5', '5-10', '10-15', '15-20', '20以上']
    len_stage = pd.cut(title_len, bins=bins, labels=level).value_counts().sort_index()
    # 生成柱状图
    attr = len_stage.index
    v1 = len_stage.values
    bar = Bar("各城市地铁线路数量分布", title_pos='center', title_top='18', width=800, height=400)
    bar.add("", attr, v1, is_stack=True, is_label_show=True)
    bar.render("各城市地铁线路数量分布.html")


# 各个城市地铁线路数
df_city = df_line.groupby(['city']).count().reset_index().sort_values(by='line', ascending=False)
print(df_city)
create_map(df_city)
create_line(df_city)

 

已经开通地铁的城市数据,还有各个城市的地铁线路数。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_06

 

一共32个城市开通地铁,其中北京、上海线路已经超过了20条。

 

城市分布情况。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_07

 

大部分都是省会城市,还有个别经济实力强的城市。

 

线路数量分布情况。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_08

 

可以看到大部分还是在「0-5」这个阶段的,当然最少为1条线。

 

 

 

# 哪个城市哪条线路地铁站最多
print(df_line.sort_values(by='station', ascending=False))

 

探索一下哪个城市哪条线路地铁站最多。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_09

 

北京10号线第一,重庆3号线第二。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_10

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_11

 

还是蛮怀念北京1张票,2块钱地铁随便做的时候。

 

可惜好日子一去不复返了。

 

去除重复换乘站数据。

 

 

 

# 去除重复换乘站的地铁数据
df_station = df.groupby(['city', 'station']).count().reset_index()
print(df_station)

 

一共包含3034个地铁站,相较新周刊中3447个地铁站数据。

 

减少了近400个地铁站。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_12

 

接下来看一下哪个城市地铁站最多。

 

 

 

# 统计每个城市包含地铁站数(已去除重复换乘站)
print(df_station.groupby(['city']).count().reset_index().sort_values(by='station', ascending=False))

 

32个城市,上海第一,北京第二。

 

没想到的是,武汉居然有那么多地铁站。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_13

 

现在来实现一下新周刊中的操作,生成地铁名词云。

 

 

 

def create_wordcloud(df):
    """
    生成地铁名词云
    """
    # 分词
    text = ''
    for line in df['station']:
        text += ' '.join(jieba.cut(line, cut_all=False))
        text += ' '
    backgroud_Image = plt.imread('rocket.jpg')
    wc = WordCloud(
        background_color='white',
        mask=backgroud_Image,
        font_path='C:\Windows\Fonts\华康俪金黑W8.TTF',
        max_words=1000,
        max_font_size=150,
        min_font_size=15,
        prefer_horizontal=1,
        random_state=50,
    )
    wc.generate_from_text(text)
    img_colors = ImageColorGenerator(backgroud_Image)
    wc.recolor(color_func=img_colors)
    # 看看词频高的有哪些
    process_word = WordCloud.process_text(wc, text)
    sort = sorted(process_word.items(), key=lambda e: e[1], reverse=True)
    print(sort[:50])
    plt.imshow(wc)
    plt.axis('off')
    wc.to_file("地铁名词云.jpg")
    print('生成词云成功!')


create_wordcloud(df_station)

 

词云图如下。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_14

 

 

广场、大道、公园占了前三,和新周刊的图片一样,说明分析有效。

 

 

 

words = []
for line in df['station']:
    for i in line:
        # 将字符串输出一个个中文
        words.append(i)


def all_np(arr):
    """
    统计单字频率
    """
    arr = np.array(arr)
    key = np.unique(arr)
    result = {}
    for k in key:
        mask = (arr == k)
        arr_new = arr[mask]
        v = arr_new.size
        result[k] = v
    return result


def create_word(word_message):
    """
    生成柱状图
    """
    attr = [j[0] for j in word_message]
    v1 = [j[1] for j in word_message]
    bar = Bar("中国地铁站最爱用的字", title_pos='center', title_top='18', width=800, height=400)
    bar.add("", attr, v1, is_stack=True, is_label_show=True)
    bar.render("中国地铁站最爱用的字.html")


word = all_np(words)
word_message = sorted(word.items(), key=lambda x: x[1], reverse=True)[:10]
create_word(word_message)

 

统计一下,大家最喜欢用什么字来命名地铁。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_15

 

路最多,在此之中上海的占比很大。

 

不信往下看。

 

 

 

# 选取上海的地铁站
df1 = df_station[df_station['city'] == '上海']
print(df1)

 

统计上海所有的地铁站,一共345个。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_16

 

选取包含路的地铁站。

 

 

 

# 选取上海地铁站名字包含路的数据
df2 = df1[df1['station'].str.contains('路')]
print(df2)

 

有210个,约占上海地铁的三分之二,路的七分之二。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_17

 

看来上海对路是情有独钟的。

 

具体缘由这里就不解释了,详情见新周刊的推送,里面还是讲解蛮详细的。

 

武汉和重庆则是对家这个词特别喜欢。

 

标志着那片土地开拓者们的籍贯与姓氏。

 

 

 

# 选取武汉的地铁站
df1 = df_station[df_station['city'] == '武汉']
print(df1)
# 选取武汉地铁站名字包含家的数据
df2 = df1[df1['station'].str.contains('家')]
print(df2)

# 选取重庆的地铁站
df1 = df_station[df_station['city'] == '重庆']
print(df1)
# 选取重庆地铁站名字包含家的数据
df2 = df1[df1['station'].str.contains('家')]
print(df2)

 

武汉共有17个,重庆共有20个。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_18

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_19

 

看完家之后,再来看一下名字包含门的地铁站。

 

 

 

def create_door(door):
    """
    生成柱状图
    """
    attr = [j for j in door['city'][:3]]
    v1 = [j for j in door['line'][:3]]
    bar = Bar("地铁站最爱用“门”命名的城市", title_pos='center', title_top='18', width=800, height=400)
    bar.add("", attr, v1, is_stack=True, is_label_show=True, yaxis_max=40)
    bar.render("地铁站最爱用门命名的城市.html")


# 选取地铁站名字包含门的数据
df1 = df_station[df_station['station'].str.contains('门')]
# 对数据进行分组计数
df2 = df1.groupby(['city']).count().reset_index().sort_values(by='line', ascending=False)
print(df2)
create_door(df2)

 

一共有21个城市,地铁站名包含门。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_20

 

其中北京,南京,西安作为多朝古都,占去了大部分。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_21

 

具体的地铁站名数据。

 

 

 

# 选取北京的地铁站
df1 = df_station[df_station['city'] == '北京']
# 选取北京地铁站名字包含门的数据
df2 = df1[df1['station'].str.contains('门')]
print(df2)

# 选取南京的地铁站
df1 = df_station[df_station['city'] == '南京']
# 选取南京地铁站名字包含门的数据
df2 = df1[df1['station'].str.contains('门')]
print(df2)

# 选取西安的地铁站
df1 = df_station[df_station['city'] == '西安']
# 选取西安地铁站名字包含门的数据
df2 = df1[df1['station'].str.contains('门')]
print(df2)

 

输出如下。

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_22

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_23

 

 

/ 03 / 总结

 

源码及相关文件已上传GitHub,点击阅读原文即可获取。

 

这里摘一段新周刊的话。

 

可以说,一个小小的地铁名就是一座城市风貌的一部分。

 

它反映着不同地方的水土,也承载着各个城市的文化和历史。

 

确实如此,靠山的城市地铁名多“山”,靠水的城市地铁名“含水量”则是杠杠的。

 

推荐阅读


[译][长文]轻松愉快迁移到Python3

 

一份还热乎的蚂蚁金服面经(已拿Offer)!附答案!!

 

我在美团的这两年,想和你分享

 

···  END  ···

 

183条地铁线路,3034个地铁站,发现中国地铁名字的秘密。_编程_24

 

 

支持小F原创  ☟