Flink中的算子是将一个或多个DataStream转换为新的DataStream,可以将多个转换组合成复杂的数据流拓扑。
在Flink中,有多种不同的DataStream类型,他们之间是使用各种算子进行的。如下图所示:
flink中常用的算子
- mapDataStream --> DataStream]:输入一个参数产生一个参数,map的功能是对输入的参数进行转换操作。
- flatMap[DataStream --> DataStream]:输入一个参数,产生0、1或者多个输出,这个多用于拆分操作
- filter[DataStream --> DataStream]:结算每个元素的布尔值,并返回为true的元素
- keyBy[DataSteam --> DataStream]:逻辑地将一个流拆分成不相交的分区,每个分区包含具有相同key的元素,在内部以hash的形式实现的。以key来分组。注意,以下类型无法作为key:
- 1. POJO类,且没有实现hashCode函数
- 2. 任意形式的数组类型
- reduce[KeyedStream --> DataStream]:滚动和并操作,合并当前元素和上一次合并的元素结果。
- fold[KeyedStream --> DataStream]:用一个初始的一个值,与其每个元素进行滚动合并操作。
- aggregation[KeyedStream --> DataStream]:分组流数据的滚动聚合操作:min和minBy的区别是min返回的是一个最小值,而minBy返回的是其字段中包含的最小值的元素(同样元原理适用于max和maxBy)
- window[KeyedStream --> DataStream]:windows是在一个分区的KeyedStreams中定义的,windows根据某些特性将每个key的数据进行分组(例如:在5s内到达的数据)。
- windowAll[DataStream --> AllWindowedStream]:Windows可以在一个常规的DataStream中定义,Windows根据某些特性对所有的流(例如:5s内到达的数据)。注意:这个操作在很多情况下都不是并行操作的,所有的记录都会聚集到一个windowAll操作的任务中
- window apply[WindowedStream --> DataStream]:将一个通用的函数作为一个整体传递给window。
- window reduce【WindowedStream --> DataStream】:给窗口赋予一个reduce的功能,并返回一个reduce的结果。
- window fold【WindowedStream --> DataStream】:给窗口赋予一个fold的功能,并返回一个fold后的结果。
- aggregation on windows【WindowedStream --> DataStream】:对window的元素做聚合操作,min和minBy的区别是min返回的是最小值,而minBy返回的是包含最小值字段的元素。(同样原理适用于max和maxBy)
- union【DataStream --> DataStream】:对两个或两个以上的DataStream做union操作,产生一个包含所有的DataStream元素的新DataStream。注意:如果将一个DataStream和自己做union操作,在新的DataStream中,将看到每个元素重复两次
- window join【DataStream --> DataStream】:根据给定的key和window对两个DataStream做join操作
- window coGroup【DataStream --> DataStream】:根据一个给定的key和window对两个DataStream做CoGroups操作。
- connect【DataStream --> ConnectedStreams】:连接两个保持她们类型的数据流。
- coMap、coFlatMap【ConnectedStreams --> DataStream】:作用于connected数据流上,功能与map和flatMap一样。
- split【DataStream --> SplitStream】:根据某些特征把一个DataStream拆分成两个或多个DataStream
- select【SplitStream --> DataStream】:从一个SplitStream中获取一个或多个DataStream
- iterate【DataStream --> IterativeStream --> DataStream】:在流程中创建一个反馈循环,将一个操作的输出重定向到之前的操作,这对于定义持续更新模型的算法来说很有意义的。
- extract timestamps【DataStream --> DataStream】:提取记录中的时间戳来跟需要事件时间的window一起发挥作用。
flink的一些算子比较
- union和connect
- connect只能连接两个流,而union可以连接多于两个流
- connect连接的两个流类型可以不一致,而union连接的流的类型必须一致
- map和flatmap
- Map: 一对一转换,即一条转换成另一条[DataStream->DataStream]
- FlatMap: 一行变零到多行[DataStream->DataStream]
- CoMap和CoFlatMap
- 跟map and flatMap类似,只不过作用在ConnectedStreams上
- split和select(拆分流)
- split是将DataStream转成SplitStream;select是将SplitStream转成DataStream
- select跟split搭配使用,从SplitStream中选择一个或多个流
- join、CoGroup、CoFlatMap
- Join:只输出条件匹配的元素对。
- CoGroup: 除了输出匹配的元素对以外,未能匹配的元素也会输出。
- CoFlatMap:没有匹配条件,不进行匹配,分别处理两个流的元素。在此基础上完全可以实现join和cogroup的功能,比他们使用上更加自由。
参考