写代码真的要小心的,小问题调试半天。。。
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('data/', one_hot=True)
num_classes = 10
input_size = 784
train_iter = 50000
batch_size = 64
X = tf.placeholder(tf.float32, shape=[None, input_size])
y = tf.placeholder(tf.float32, shape=[None, num_classes])
W = tf.Variable(tf.random_normal([input_size, num_classes], stddev=0.1))
b = tf.Variable(tf.constant(0.1, shape=[num_classes]))
y_pred = tf.nn.softmax(tf.matmul(X, W) + b)
loss = tf.reduce_mean(tf.square(y - y_pred))
train = tf.train.GradientDescentOptimizer(learning_rate=0.05).minimize(loss)
correct_pred = tf.equal(tf.argmax(y_pred,1), tf.argmax(y,1)) #通过最大值的位置是否一支来判断结果是否判断正确
accuracy = tf.reduce_mean(tf.cast(correct_pred, "float"))#求平均值,就是正确率
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in range(train_iter):
batch = mnist.train.next_batch(batch_size)
X_temp = batch[0]
y_temp = batch[1]
sess.run(train, feed_dict={X:X_temp, y:y_temp})
if step % 1000 == 0:
train_accu = sess.run(accuracy, feed_dict={X:X_temp, y:y_temp})
print(train_accu)