各种逗。。。。
翻译白书上有;看了白书和网上的标程,学习了。。orz。
双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果这个是割点那么子树就都是双连通分量,然后本题求的是奇圈,那么就进行黑白染色,判断是否为奇圈即可。将不是奇圈的所有双连通分量的点累计起来即可。
#include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> #include <queue> #include <set> #include <stack> #include <vector> using namespace std; #define rep(i, n) for(int i=0; i<(n); ++i) #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) for(int i=(a);i>=(n);--i) #define for4(i,a,n) for(int i=(a);i>(n);--i) #define CC(i,a) memset(i,a,sizeof(i)) #define read(a) a=getint() #define print(a) printf("%d", a) #define dbg(x) cout << (#x) << " = " << (x) << endl #define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; } #define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } inline const int max(const int &a, const int &b) { return a>b?a:b; } inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1005, M=1000005; int ihead[N], n, m, cnt, LL[N], FF[N], mp[N][N], tot, s[M<<1], top, vis[N], ok[N], col[N]; struct ED { int from, to, next; } e[M<<1]; void add(int u, int v) { e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].from=u; e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].from=v; } bool ifind(int u) { int v; for(int i=ihead[u]; i; i=e[i].next) if(vis[v=e[i].to]) { if(col[v]==-1) { col[v]=!col[u]; return ifind(v); } else if(col[v]==col[u]) return true; } return false; } void color(int x) { int y, u=e[x].from; CC(vis, 0); CC(col, -1); col[u]=0; do { y=s[top--]; vis[e[y].from]=vis[e[y].to]=1; } while(y!=x); if(ifind(u)) for1(i, 1, n) if(vis[i]) ok[i]=1; } void tarjan(int u, int fa) { FF[u]=LL[u]=++tot; for(int i=ihead[u]; i; i=e[i].next) if(fa!=e[i].to) { int v=e[i].to; if(!FF[v]) { s[++top]=i; //入栈这里要注意。。不要在上边入栈。。 tarjan(v, u); if(LL[v]>=FF[u]) color(i); LL[u]=min(LL[u], LL[v]); } else if(LL[u]>FF[v]) s[++top]=i, LL[u]=FF[v]; //入栈这里要注意。。 } } int main() { while(1) { read(n); read(m); int ans=0; if(n==0 && m==0) break; CC(mp, 0); CC(ihead, 0); CC(LL, 0); CC(FF, 0); CC(ok, 0); top=cnt=tot=0; rep(i, m) { int u=getint(), v=getint(); mp[u][v]=mp[v][u]=1; } for1(i, 1, n) for1(j, i+1, n) if(!mp[i][j]) add(i, j); for1(i, 1, n) if(!FF[i]) tarjan(i, -1); for1(i, 1, n) if(!ok[i]) ++ans; printf("%d\n", ans); } return 0; }
Description
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
- The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
- An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)
Input
The input is terminated by a block with n = m = 0 .
Output
Sample Input
5 5 1 4 1 5 2 5 3 4 4 5 0 0
Sample Output
2
Hint
Source