和这题不是差不多的嘛~~【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)
唯一不同的地方是这题有下界。。
下界除以k的时候取上界,然后分块的时候因为有4个数,所以要分成4块来搞。。
然后就行了。。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
const int N=50005;
int p[N], np[N], cnt, mu[N];
ll sum[N];
void init() {
mu[1]=1;
for2(i, 2, N) {
if(!np[i]) p[++cnt]=i, mu[i]=-1;
for1(j, 1, cnt) {
int t=p[j]*i; if(t>=N) break;
np[t]=1;
if(i%p[j]==0) { mu[t]=0; break; }
mu[t]=-mu[i];
}
}
for2(i, 1, N) sum[i]=sum[i-1]+mu[i];
}
inline ll cal(int a, int b, int c, int d, int k) {
return max(0ll, (ll)((b/k)-((a-1)/k))*(ll)((d/k)-((c-1)/k)));
}
int main() {
init();
int n=getint();
while(n--) {
int a=getint(), b=getint(), c=getint(), d=getint(), k=getint();
a=(a+k-1)/k; b/=k; c=(c+k-1)/k; d/=k;
//dbg(a); dbg(b); dbg(c); dbg(d);
int len=min(b, d);
ll ans=0;
int pos;
for(int i=1; i<=len; i=pos+1) {
pos=min(b/(b/i), d/(d/i));
if((a-1)/i!=0) pos=min(pos, (a-1)/((a-1)/i));
if((c-1)/i!=0) pos=min(pos, (c-1)/((c-1)/i));
ans+=(sum[pos]-sum[i-1])*cal(a, b, c, d, i);
}
printf("%lld\n", ans);
}
return 0;
}
Description
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2 5 1 5 1
1 5 1 5 2
Sample Output
14
3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
Source