题目大意:给定一个无向图,每个点和每条边都有权值,多次询问从点v开始只能经过边权小于等于x的点中权值第k大

此题不强制在线,直接把边和询问都按照边权从小到大排序,初始每个节点是一个Treap的根节点

对于每个询问把小于等于这个询问的权值的边两侧的Treap进行启发式合并 然后求第k大即可

不知道是谁出了个强制在线版……回头研究一下

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 100100
using namespace std;
struct abcd{
	abcd *ls,*rs;
	int num,key;
	int cnt,size;
	abcd (int x,int y);
	void Maintain();
}*null=new abcd(-19980402,0),*tree[M];
struct query{
	int v,x,k,pos;
	bool operator < (const query &y) const
	{
		return x < y.x;
	}
}queries[M*5];
struct edge{
	int x,y,z;
	bool operator < (const edge &Y) const
	{
		return z < Y.z;
	}
}edges[M*5];
int n,m,q;
int a[M],ans[M*5];
int fa[M],size[M];
abcd :: abcd(int x,int y)
{
	ls=rs=null;
	num=x;
	key=x==-19980402?0:rand();
	cnt=size=y;
}
void abcd :: Maintain()
{
	size=ls->size+rs->size+cnt;
}
void Zig(abcd *&x)
{
	abcd *y=x->ls;
	x->ls=y->rs;
	y->rs=x;
	x=y;
	x->rs->Maintain();
}
void Zag(abcd *&x)
{
	abcd *y=x->rs;
	x->rs=y->ls;
	y->ls=x;
	x=y;
	x->ls->Maintain();
}
void Insert(abcd *&x,int y,int z)
{
	if(x==null)
	{
		x=new abcd(y,z);
		return ;
	}
	if(y==x->num)
		x->cnt+=z;
	else if(y<x->num)
	{
		Insert(x->ls,y,z);
		if(x->ls->key>x->key)
			Zig(x);
	}
	else
	{
		Insert(x->rs,y,z);
		if(x->rs->key>x->key)
			Zag(x);
	}
	x->Maintain();
}
void Decomposition(abcd *&x,int y)
{
	if(x==null)
		return ;
	Decomposition(x->ls,y);
	Decomposition(x->rs,y);
	Insert(tree[y],x->num,x->cnt);
	delete x;
	x=null;
}
int Get_Kth(abcd *x,int k)
{
	int temp=x->rs->size;
	if(k<=temp)
		return Get_Kth(x->rs,k);
	k-=temp;
	if(k<=x->cnt)
		return x->num;
	k-=x->cnt;
	return Get_Kth(x->ls,k);
}
int Find(int x)
{
	if(!fa[x])
		fa[x]=x,size[x]=1;
	if(fa[x]==x)
		return x;
	return fa[x]=Find(fa[x]);
}
void Merge(int x,int y)
{
	x=Find(x);y=Find(y);
	if(x==y)
		return ;
	if(size[x]>size[y])
		swap(x,y);
	Decomposition(tree[x],y);
	size[y]+=size[x];
	fa[x]=y;
}
int main()
{
	srand(19980402);
	int i,j,x,y,z;
	cin>>n>>m>>q;
	for(i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		tree[i]=new abcd(a[i],1);
	}
	for(i=1;i<=m;i++)
		scanf("%d%d%d",&edges[i].x,&edges[i].y,&edges[i].z);
	sort(edges+1,edges+m+1);
	for(i=1;i<=q;i++)
	{
		scanf("%d%d%d",&queries[i].v,&queries[i].x,&queries[i].k);
		queries[i].pos=i;
	}
	sort(queries+1,queries+q+1);
	for(i=1,j=1;i<=q;i++)
	{
		for(;j<=m&&edges[j].z<=queries[i].x;j++)
			Merge(edges[j].x,edges[j].y);
		queries[i].v=Find(queries[i].v);
		if(size[queries[i].v]<queries[i].k)
			ans[queries[i].pos]=-1;
		else
			ans[queries[i].pos]=Get_Kth(tree[queries[i].v],queries[i].k);
	}
	for(i=1;i<=q;i++)
		printf("%d\n",ans[i]);
}