题目:

http://acm.hdu.edu.cn/showproblem.php?pid=3663

题意:

有n个城市,有m对直接相连关系,每个城市有一个发电站,每个发电站都有一个限定的工作时间,只能在限定的时间内使用且一旦关闭就不能再使用,每个发电站只能向自己和直接相连的城市送电,每个城市只能接受一个发电站的输送的电,否则就完蛋。选择一个发电站工作方案,在d天内使所有城市都有电,不能满足则输出No solution

思路:

DLX精确覆盖问题。把每个城市的每天的电是一个状态,那么有n∗d列,又每个发电站只能工作一个连续的时间段,意味每个城市只能被选一次开启发电站,因此再加n列标识选择了哪个城市,共n∗(d+1)列。对于d,有d∗(d+1)/2个不同的连续子区间,意味着状态矩阵有n∗d∗(d+1)/2行,把相应的位置标为1,直接跑DLX精确覆盖

#include <bits/stdc++.h>

using namespace std;

const int X = 500000 + 10, N = 1000 + 10, M = 400 + 10, INF = 0x3f3f3f3f;

struct edge
{
    int to, next;
}g[N*N*2];
int cnt, head[N];
int n, m, d;
int ts[N], te[N];
bool vis[N][N];
void add_edge(int v, int u)
{
    g[cnt].to = u, g[cnt].next = head[v], head[v] = cnt++;
}
struct DLX
{
    int U[X], D[X], L[X], R[X], row[X], col[X];
    int H[N], S[M];
    int head, sz, tot, n, m, ans[N];
    void init(int _n, int _m)
    {
        n = _n, m = _m;
        for(int i = 0; i <= m; i++)
            L[i] = i-1, R[i] = i+1, U[i] = D[i] = i, S[i] = 0;
        head = 0, tot = 0, sz = m;
        L[head] = m, R[m] = head;
        for(int i = 1; i <= n; i++) H[i] = -1;
    }
    void link(int r, int c)
    {
        ++S[col[++sz]=c];
        row[sz] = r;
        D[sz] = D[c], U[D[c]] = sz;
        U[sz] = c, D[c] = sz;
        if(H[r] < 0) H[r] = L[sz] = R[sz] = sz;
        else R[sz] = R[H[r]], L[R[H[r]]] = sz, L[sz] = H[r], R[H[r]] = sz;
    }
    void del(int c)
    {
        L[R[c]] = L[c], R[L[c]] = R[c];
        for(int i = D[c]; i != c; i = D[i])
            for(int j = R[i]; j != i; j = R[j])
                D[U[j]] = D[j], U[D[j]] = U[j], --S[col[j]];
    }
    void recover(int c)
    {
        for(int i = U[c]; i != c; i = U[i])
            for(int j = L[i]; j != i; j = L[j])
                D[U[j]] = U[D[j]] = j, ++S[col[j]];
        R[L[c]] = L[R[c]] = c;
    }
    bool dance(int dep)
    {
        if(R[head] == head)
        {
            tot = dep-1; return true;
        }
        int c = R[head];
        for(int i = R[head]; i != head; i = R[i])
            if(S[i] < S[c]) c = i;
        del(c);
        for(int i = D[c]; i != c; i = D[i])
        {
            ans[dep] = row[i];
            for(int j = R[i]; j != i; j = R[j]) del(col[j]);
            if(dance(dep + 1)) return true;
            for(int j = L[i]; j != i; j = L[j]) recover(col[j]);
        }
        recover(c);
        return false;
    }
}dlx;
void work(int x, int s, int e, int &id)
{
    id++;
    ts[id] = 0, te[id] = 0;
    dlx.link(id, n*d + x);

    for(int i = s; i <= e; i++)
        for(int j = i; j <= e; j++)
        {
            id++;
            ts[id] = i, te[id] = j;
            for(int k = head[x]; k != -1; k = g[k].next)
            {
                int v = g[k].to;
                for(int l = i; l <= j; l++)
                    dlx.link(id, (l-1)*n + v);
            }
            dlx.link(id, n*d + x);
        }
}
int main()
{
    while(~ scanf("%d%d%d", &n, &m, &d))
    {
        cnt = 0;
        memset(head, -1, sizeof head);
        memset(vis, 0, sizeof vis);
        memset(ts, 0, sizeof ts);
        memset(te, 0, sizeof te);
        dlx.init(n * (d*(d+1)/2+1), n * (d+1));
        int v, u;
        for(int i = 1; i <= m; i++)
        {
            scanf("%d%d", &v, &u);
            vis[v][u] = vis[u][v] = true;
        }
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                if(i == j || vis[i][j]) add_edge(i, j);
        int s, e, id = 0;
        for(int i = 1; i <= n; i++)
        {
            scanf("%d%d", &s, &e);
            work(i, s, e, id);
        }
        bool flag = dlx.dance(1);
        if(flag == false) puts("No solution");
        else
        {
            sort(dlx.ans + 1, dlx.ans + 1 + dlx.tot);
            for(int i = 1; i <= dlx.tot; i++) printf("%d %d\n", ts[dlx.ans[i]], te[dlx.ans[i]]);
        }
        printf("\n");
    }
    return 0;
}