'''支持向量机-------------------------------------数据集:Mnist训练集数量:10000测试集数量:1000---------------------------------训练结果:初始化时间:327s训练时间:285s正确率:0.99'''
import numpy as np
import time
from itertools import islice
import math
'''readlines方法读取训练数据--------输入:file:数据地址--------输出:data:转换后的数据label:转换后的标记'''
def LoadData(file):
# 打开数据文件
fr = open(file, 'r')
# 准备两个list存储data和label
data = []
label = []
# 逐行读取数据,使用islice可以直接跳过第一行表头进行逐行读取
for line in islice(fr,1,None):
# 对每一行消去空格,并根据','进行分割
splited = line.strip().split(',')
# 分割后的第一个元素是Label,跳过label遍历所有特征值
# 归一化
int_line = [int(num) / 255 for num in splited[1:]]
# 逐行存储数据
data.append(int_line)
# 将问题转换为二分类问题
if int(splited[0]) == 0:
label.append(1)
else:
label.append(-1)
# 转换成ndarray形式方便后续计算
data = np.array(data)
label = np.array(label)
# 返回数据的特征部分和标记部分
return data, label
'''定义SVM类'''
class SVM:
'''初始化参数'''
def __init__(self, train_data, train_label, sigma, C, toler, itertime):
self.train_data = train_data # 训练集数据
self.train_label = train_label # 训练集标记
self.m, self.n = np.shape(train_data) # self.m为训练集样本容量,self.n为特征数量
self.sigma = sigma # 高斯核分母上的超参数
self.KernalMatrix = self.CalKernalMatrix() # 高斯核矩阵
self.alpha = np.zeros(self.m) # 初始化拉格朗日向量,长度为训练集样本容量
self.b = 0 # 初始化参数b
self.C = C # 惩罚参数
self.toler = toler # 松弛变量
self.itertime = itertime # 迭代次数
self.E = [float(-1 * y) for y in self.train_label] # 初始化Elist,因为alpha和b初始值为0,因此E的初始值为训练集标记的值
'''计算高斯核矩阵'''
def CalKernalMatrix(self):
# 初始化高斯核矩阵,矩阵为m*m大小
KernalMatrix = [[0 for i in range(self.m)] for j in range(self.m)]
# 遍历每一个样本
for i in range(self.m):
# 首先得到一个样本的数据
X = self.train_data[i]
# 仅遍历从i到self.m的样本,因为Kij和Kji的值相同,所以只需要计算一次
for j in range(i, self.m):
# 得到另一个样本的数据
Z = self.train_data[j]
# 计算核函数
K = np.exp(-1 * np.dot(X - Z, X - Z) / (2 * np.square(self.sigma)))
# 存储在核矩阵中对称的位置
KernalMatrix[i][j] = K
KernalMatrix[j][i] = K
KernalMatrix = np.array(KernalMatrix)
return KernalMatrix
'''计算g(xi)'''
def Calgxi(self, i):
Index = [index for index, value in enumerate(self.alpha) if value != 0]
gxi = 0
for index in Index:
gxi += self.alpha[index] * self.train_label[index] * self.KernalMatrix[i][index]
gxi = gxi + self.b
return gxi
'''判断是否符合KKT条件'''
def isSatisfyKKT(self, i):
# 获得alpha[i]的值
alpha_i = self.alpha[i]
# 计算yi * g(xi)
gxi = self.Calgxi(i)
yi = self.train_label[i]
yi_gxi = yi * gxi
# 判断是否符合KKT条件
if -1 * self.toler < alpha_i < self.toler and yi_gxi >= 1:
return True
elif -1 * self.toler < alpha_i < self.C + self.toler and math.fabs(yi_gxi - 1) < self.toler:
return True
elif self.C - self.toler < alpha_i < self.C + self.toler and yi_gxi <= 1:
return True
return False
'''SMO算法'''
def SMO(self):
# 迭代
t = 0
parameterchanged = 1
while t < self.itertime and parameterchanged > 0:
t += 1
parameterchanged = 0
'''选择两个alpha'''
# 外层循环,选择第一个alpha
for i in range(self.m):
# 判断是否符合KKT条件,如果不满足,则选择该alpha为alpha1
# 如果满足,则继续外层循环
TorF = self.isSatisfyKKT(i)
if TorF == False:
alpha1 = self.alpha[i]
# 从Earray得到alpha1对应的E1
E1 = self.E[i]
# 复制一个EMatrix,并令E1的位置为nan
# 这样在接下来找最大值和最小值时将不会考虑E1
# 这里需要使用copy,如果不用copy,改变EM_temp也会同时改变EMatrix
EM_temp = np.copy(self.E)
EM_temp[i] = np.nan
# 我们需要使|E1-E2|的值最大,由此选择E2
# 首先初始化maxE1_E2和E2及E2的下标j
maxE1_E2 = -1
E2 = np.nan
j = -1
# 内层循环
# 遍历EM_temp中的每一个Ei,得到使|E1-E2|最大的E和它的下标
for j_temp, Ej in enumerate(EM_temp):
if math.fabs(E1 - Ej) > maxE1_E2:
maxE1_E2 = math.fabs(E1 - Ej)
E2 = Ej
j = j_temp
# alpha2为E2对应的alpha
alpha2 = self.alpha[j]
'''求最优alpha1和alpha2'''
y1 = self.train_label[i]
y2 = self.train_label[j]
# 计算η
K11 = self.KernalMatrix[i][i]
K22 = self.KernalMatrix[j][j]
K12 = self.KernalMatrix[i][j]
eta = K11 + K22 - 2 * K12
# 计算alpha2_new
alpha2_new = alpha2 + y2 * (E1 - E2) / eta
# 计算上限H和下限L
if y1 != y2:
L = max([0, alpha2 - alpha1])
H = min([self.C, self.C + alpha2 - alpha1])
else:
L = max([0, alpha2 + alpha1 - self.C])
H = min([self.C, alpha2 + alpha1])
# 剪切alpha2_new
if alpha2_new > H:
alpha2_new = H
elif alpha2_new < L:
alpha2_new = L
# 得到alpha1_new
alpha1_new = alpha1 + y1 * y2 * (alpha2 - alpha2_new)
'''更新b'''
# 计算b1_new和b2_new
b1_new = -1 * E1 - y1 * K11 * (alpha1_new - alpha1) \
- y2 * K12 * (alpha2_new - alpha2) + self.b
b2_new = -1 * E2 - y1 * K12 * (alpha1_new - alpha1) \
- y2 * K22 * (alpha2_new - alpha2) + self.b
# 根据alpha1和alpha2的范围确定b_new
if 0 < alpha1_new < self.C and 0 < alpha2_new < self.C:
b_new = b1_new
else:
b_new = (b1_new + b2_new) / 2
'''更新E'''
# 首先需要更新两个alpha和b
self.alpha[i] = alpha1_new
self.alpha[j] = alpha2_new
self.b = b_new
# 计算Ei_new和Ej_new
E1_new = self.Calgxi(i) - y1
E2_new = self.Calgxi(j) - y2
# 更新E
self.E[i] = E1_new
self.E[j] = E2_new
if math.fabs(alpha2_new - alpha2) >= 0.000001:
parameterchanged += 1
print('itertime: %a parameterchanged: %a' % (t,parameterchanged))
# 最后遍历一遍alpha,大于0的下标即对应支持向量
VecIndex = [index for index, value in enumerate(self.alpha) if value > 0]
# 返回支持向量的下标,之后在预测时还需要用到
return VecIndex
'''计算b'''
def OptimizeB(self):
for j, a in enumerate(self.alpha):
if 0 < a < self.C:
break
yj = self.train_label[j]
summary = 0
for i in range(self.alpha):
summary += self.alpha[i] * self.train_label[i] * self.KernalMatrix[i][j]
optimiezedB = yj - summary
self.b = optimiezedB
'''计算单个核函数'''
def CalSingleKernal(self, x, z):
SingleKernal = np.exp(-1 * np.dot(x - z, x - z) / (2 * np.square(self.sigma)))
return SingleKernal
'''单个新输入实例的预测'''
def predict(self, x, VecIndex):
# 决策函数计算
# 求和项初始化
summary = 0
# Index中存储着不为0的alpha的下标
for i in VecIndex:
alphai = self.alpha[i]
yi = self.train_label[i]
Kernali = self.CalSingleKernal(x, self.train_data[i])
summary += alphai * yi * Kernali
# 最后+b
# np.sign得到符号
result = np.sign(summary + self.b)
return result
'''测试模型'''
def test(self, test_data, test_label, VecIndex):
# 测试集实例数量
TestNum = len(test_label)
errorCnt = 0
# 对每一个实例进行预测
for i in range(TestNum):
result = self.predict(test_data[i], VecIndex)
if result != test_label[i]:
errorCnt += 1
Acc = 1 - errorCnt / TestNum
return Acc
'''测试模型'''
if __name__ == "__main__":
print('start loading')
# 输入训练集
train_data, train_label = LoadData('E:/我的学习笔记/统计学习方法/实战/训练数据/mnist_train.csv')
# 输入测试集
test_data, test_label = LoadData('E:/我的学习笔记/统计学习方法/实战/训练数据/mnist_test.csv')
print('end loading')
# 初始化
print('start initiating')
start = time.time()
svm = SVM(train_data[0:10000], train_label[0:10000], 10, 200, 0.001, 10)
end = time.time()
print('end initiating')
print('initiating time: ', end - start)
# 开始SMO算法
print('start training')
start = time.time()
VecIndex = svm.SMO()
end = time.time()
print('end training')
print('training time: ', end - start)
# 开始测试模型
Acc = svm.test(test_data[0:1000], test_label[0:1000], VecIndex)
print('Accurate: ', Acc)
图形学高斯核
转载本文章为转载内容,我们尊重原作者对文章享有的著作权。如有内容错误或侵权问题,欢迎原作者联系我们进行内容更正或删除文章。
下一篇:python socket一对多
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章
-
WebGL图形学
写在本系列前面由于我也是半道出家,首先学的前端开发,对3d开发很感兴趣,刚好又感一本书也算是真正的入门计算机图形学的中层了。做...
webgl 图形学 进阶 3d 编程指南 -
树状结构的优劣 java
----------------------------------------------------------------------------------- &n
树状结构的优劣 java null bbs sql server output