1. 相关理论

  • 什么是图像分割(Image Segmentation)

    • 图像分割(Image Segmentation)是图像处理最重要的处理手段之一
    • 图像分割的目标是将图像中像素根据一定的规则分为若干(N)个cluster集合,每个集合包含一类像素。
    • 根据算法分为监督学习方法和无监督学习方法,图像分割的算法多数都是无监督学习方法 - KMeans
  • 距离变换与分水岭介绍

    • 距离变换常见算法有两种
      • 不断膨胀/ 腐蚀得到
      • 基于倒角距离
    • 分水岭变换常见的算法
      • 基于浸泡理论实现
  • 相关API

    cv::distanceTransform(
        InputArray  src, OutputArray dst,  
        OutputArray  labels,  int  distanceType, 
        int maskSize,  int labelType=DIST_LABEL_CCOMP)
    
    distanceType = DIST_L1/DIST_L2,
    maskSize = 3x3,最新的支持5x5,推荐3x3、
    labels 离散维诺图输出
    dst 输出8位或者32位的浮点数,单一通道,大小与输入图像一致
    
    cv::watershed(InputArray image, InputOutputArray  markers)
    

2. 代码 & 效果展示

  • 处理流程

    1. 将白色背景变成黑色-目的是为后面的变换做准备
    2. 使用filter2D与拉普拉斯算子实现图像对比度提高,sharp
    3. 转为二值图像通过threshold
    4. 距离变换
    5. 对距离变换结果进行归一化到[0~1]之间
    6. 使用阈值,再次二值化,得到标记
    7. 腐蚀得到每个Peak - erode
    8. 发现轮廓 – findContours
    9. 绘制轮廓- drawContours
    10. 分水岭变换 watershed
    11. 对每个分割区域着色输出结果
  • 代码:

    #include <iostream>
    #include <opencv2/opencv.hpp>
    #include <opencv2/imgproc/types_c.h>
    
    using namespace std;
    using namespace cv;
    
    #ifndef P33
    #define P33 33
    #endif
    
    int main() {
        std::string path = "../circle.JPG";
        cv::Mat img = cv::imread(path, 5);
    
        string str_input = "input image";
        string str_output = "output image";
    
        if (img.empty()) {
            std::cout << "open file failed" << std::endl;
            return -1;
        }
    
        namedWindow(str_input, WINDOW_AUTOSIZE);
        namedWindow(str_output, WINDOW_AUTOSIZE);
        imshow(str_input, img);
        
    #if P34
        Mat src = img;
    
        // 1. change background
        for (int row = 0; row < src.rows; row++) {
            for (int col = 0; col < src.cols; col++) {
                if (src.at<Vec3b>(row, col) == Vec3b(255, 255, 255)) {
                    src.at<Vec3b>(row, col)[0] = 0;
                    src.at<Vec3b>(row, col)[1] = 0;
                    src.at<Vec3b>(row, col)[2] = 0;
                }
            }
        }
        namedWindow("black background", WINDOW_AUTOSIZE);
        imshow("black background", src);
    
        // sharpen
        Mat kernel = (Mat_<float>(3, 3) << 1, 1, 1, 1, -8, 1, 1, 1, 1);
        Mat imgLaplance;
        Mat sharpenImg = src;
        filter2D(src, imgLaplance, CV_32F, kernel, Point(-1, -1), 0, BORDER_DEFAULT);
        src.convertTo(sharpenImg, CV_32F);
        Mat resultImg = sharpenImg - imgLaplance;
    
        resultImg.convertTo(resultImg, CV_8UC3);
        imgLaplance.convertTo(imgLaplance, CV_8UC3);
        imshow("sharpen image", resultImg);
        // src = resultImg; // copy back
    
        // convert to binary
        Mat binaryImg;
        cvtColor(src, resultImg, CV_BGR2GRAY);
        threshold(resultImg, binaryImg, 40, 255, THRESH_BINARY | THRESH_OTSU);
        imshow("binary image", binaryImg);
    
        Mat distImg;
        distanceTransform(binaryImg, distImg, DIST_L1, 3, 5);
        normalize(distImg, distImg, 0, 1, NORM_MINMAX);
        imshow("distance result", distImg);
    
        // binary again
        threshold(distImg, distImg, .4, 1, THRESH_BINARY);
        Mat k1 = Mat::ones(13, 13, CV_8UC1);
        erode(distImg, distImg, k1, Point(-1, -1));
        imshow("distance binary image", distImg);
    
        // markers
        Mat dist_8u;
        distImg.convertTo(dist_8u, CV_8U);
        vector<vector<Point>> contours;
        findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0));
    
        // create makers
        Mat markers = Mat::zeros(src.size(), CV_32SC1);
        for (size_t i = 0; i < contours.size(); i++) {
            drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i) + 1), -1);
        }
        circle(markers, Point(5, 5), 3, Scalar(255, 255, 255), -1);
        //imshow("my markers", markers);
        //imshow("my markers", markers*1000);
    
        // perform watershed
        watershed(src, markers);
        Mat mark = Mat::zeros(markers.size(), CV_8UC1);
        markers.convertTo(mark, CV_8UC1);
        bitwise_not(mark, mark, Mat());
        imshow("watershed image", mark);
    
        // generate random color
        vector<Vec3b> colors;
        for (size_t i = 0; i < contours.size(); i++) {
            int r = theRNG().uniform(0, 255);
            int g = theRNG().uniform(0, 255);
            int b = theRNG().uniform(0, 255);
            colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
        }
    
        // fill with color and display final result
        Mat dst = Mat::zeros(markers.size(), CV_8UC3);
        for (int row = 0; row < markers.rows; row++) {
            for (int col = 0; col < markers.cols; col++) {
                int index = markers.at<int>(row, col);
                if (index > 0 && index <= static_cast<int>(contours.size())) {
                    dst.at<Vec3b>(row, col) = colors[index - 1];
                }
                else {
                    dst.at<Vec3b>(row, col) = Vec3b(0, 0, 0);
                }
            }
        }
        imshow("Final Result", dst);
    #endif
    
        cv::waitKey(0);
        cv::destroyAllWindows();
        return 0;
    }	
    

效果展示:
图像比较多,只展示原图和经过分水岭处理后的图形:
【OpenCV图像处理】1.33 基于距离变换与分水岭的图像分割_#endif