hive(0.9.0):
1.支持equality joins, outer joins, and left semi joins
2.只支持等值条件
3.支持多表join
原理
hive执行引擎会将HQL“翻译”成为map-reduce任务,如果多张表使用同一列做join则将被翻译成一个reduce,否则将被翻译成多个map-reduce任务。
eg:
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)将被翻译成1个map-reduce任务
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
将被翻译成2个map-reduce任务
这个很好理解,一般来说(map side join除外,后面会介绍),map过程负责分发数据,具体的join操作在reduce完成,因此,如果多表基于不同的列做join,则无法在一轮map-reduce任务中将所有相关数据shuffle到统一个reducer
对于多表join,hive会将前面的表缓存在reducer的内存中,然后后面的表会流式的进入reducer和reducer内存中其它的表做join。
eg:
1. SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
在reducer中,a、b表待join的数据会放在内存中。
这会引起一些问题,如果reducer个数不足或者a、b表数据过大,则可能oom
因此,我们需要将数据量最大的表放到最后,或者通过“STREAMTABLE”显示指定reducer流式读入的表
eg:
SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)此时,b、c表数据在reducer将放在内存中
Outer join
Outer join包括left、right、full outer join,其目的是针对不匹配的情况做一些控制。
表a:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)LEFT OUTER JOIN:如果a.key中找不到对应的b.key,则输出a.val,NULL
LEFT OUTER JOIN可以用来代替not in(not in 在Hive0.8才支持)
eg:
select a.key from a left outer join b on a.key=b.key where b.key1 is null
实例:
1. hive> select * from a ;
2. OK
3. key value
4. 1 a
5. 2 b
6. 3 c
7. Time taken: 0.155 seconds
8. hive> select * from b;
9. OK
10. key value
11. 1 d
12. 2 e
13. 4 f
14. hive> SELECT a.value, b.value FROM a LEFT OUTER JOIN b ON (a.key=b.key);
15. OK
16. value value
17. a d
18. b e
19. c NULL
20. hive> SELECT a.value, b.value FROM a RIGHT OUTER JOIN b ON (a.key=b.key);
21. OK
22. value value
23. a d
24. b e
25. NULL f
26. hive> SELECT a.value, b.value FROM a FULL OUTER JOIN b ON (a.key=b.key);
27. OK
28. value value
29. a d
30. b e
31. c NULL
32. NULL f
Left Semi Join
hive之前(现已支持!)不支持in/exists,left semi join是in/exists更有效率的实现。
eg:
SELECT a.key, a.value FROM a WHERE a.key in (SELECT b.key FROM B);可以使用如下语句代替:
SELECT a.key, a.val FROM a LEFT SEMI JOIN b on (a.key = b.key)
Map Side Join
假如join两张表,其中有一张表特别小(可以放到内存中),那么可以使用Map-side join。Map side join是在mapper中做join,原理是将其中一张join表放到每个mapper任务的内存中,从而不用reducer任务,在mapper中就完成join。Map side join不适合FULL/RIGHT OUTER JOIN,理由大家思考下。
示例:
SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a join b on a.key = b.key
Bucketed Map Join
Bucketed map join是一种特殊的map side join,其针对的是所有的表都使用待join的key作为bucket列,并且bucket数量彼此有倍数关系的场景。在这种场景下,由于不需要将整张表导入内存,只需要将相应的bucket导入内存,因此,适宜一些数据量比较大的表。
例如,Table a使用key作为bucket列,共有8个bucket,Table b也是用key作为bucket列,有16个bucket,则使用Map side join,a只需要将b对应的2个bucket放入内存即可,如下:
SELECT /*+ MAPJOIN(b) */ a.key, a.valueFROM a join b on a.key = b.key
在不一点left semi join的原理:
只用B表的join字段做reduce端的过滤,感觉不是semi join这个词的意思
这里有个left semi join的explain:
STAGE PLANS:
Stage: Stage-4
Conditional Operator
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
t1:t
TableScan
alias: t
Select Operator
expressions:
expr: dt
type: string
expr: regexp_extract(params, '&orderNo=([^&]*)', 1)
type: string
outputColumnNames: _col1, _col2
Reduce Output Operator
key expressions:
expr: lower(trim(_col2))
type: string
sort order: +
Map-reduce partition columns:
expr: lower(trim(_col2))
type: string
tag: 0
value expressions:
expr: _col1
type: string
expr: _col2
type: string
t2:t
TableScan
alias: t
Filter Operator
predicate:
expr: (substring(ordercreatetime, 0, 10) = '2014-11-01')
type: boolean
Select Operator
expressions:
expr: orderno
type: string
outputColumnNames: _col0
Group By Operator
bucketGroup: false
keys:
expr: _col0
type: string
mode: hash
outputColumnNames: _col0
Reduce Output Operator
key expressions:
expr: lower(trim(_col0))
type: string
sort order: +
Map-reduce partition columns:
expr: lower(trim(_col0))
type: string
tag: 1
Reduce Operator Tree:
Join Operator
condition map:
Left Semi Join 0 to 1
condition expressions:
0 {VALUE._col1} {VALUE._col2}
1
handleSkewJoin: false
outputColumnNames: _col1, _col2
Select Operator
expressions:
expr: _col1
type: string
expr: _col2
type: string
outputColumnNames: _col0, _col1
File Output Operator
compressed: false
GlobalTableId: 0
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
Stage: Stage-0
Fetch Operator
limit: -1