​welcome to my blog​

LeetCode Top 100 Liked Questions 538. Convert BST to Greater Tree (Java版; Easy)

题目描述

Given a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original BST is changed to the original key 
plus sum of all keys greater than the original key in BST.

Example:

Input: The root of a Binary Search Tree like this:
5
/ \
2 13

Output: The root of a Greater Tree like this:
18
/ \
20 13
class Solution {
public TreeNode convertBST(TreeNode root) {
if(root==null){
return root;
}
//反中序遍历, 迭代版
Stack<TreeNode> s = new Stack<>();
int sum = 0;
TreeNode cur = root;
while(!s.isEmpty() || cur!=null){
while(cur!=null){
s.push(cur);
cur = cur.right;
}
cur = s.pop();
sum+=cur.val;
cur.val = sum;
cur = cur.left;
}
return root;
}
}
class Solution {
//反中序遍历的累加和
private int sum = 0;
public TreeNode convertBST(TreeNode root) {
if(root==null){
return root;
}
convertBST(root.right);
sum += root.val;
root.val = sum;
convertBST(root.left);
return root;
}
}
class Solution {
public TreeNode convertBST(TreeNode root) {
core(root, 0);
return root;
}
//因为是搜索二叉树, 所以可以以右根左的顺序遍历, 这样是降序
private int core(TreeNode root, int parentSum){
if(root==null){
return 0;
}
//right
int R = core(root.right, parentSum);
//root
int tmp = root.val;
root.val = root.val + R + parentSum;
//left
int L = core(root.left, root.val);
return L + tmp + R;
}
}

最开始的错误原因, 估计之后看就看不懂了, 主要是提醒自己得熟练的画图梳理递归逻辑

错误原因:root右子树的考虑了root父节点的信息, 重复了, root右子树应该返回1

LeetCode Top 100 Liked Questions 538. Convert BST to Greater Tree (Java版; Easy)_java

第一次做; 考察二叉树遍历; 采用右根左的形式; 涉及到前缀和, 需要很小心; 返回值和直接功能分离

/*
DFS; 右根左的形式遍历二叉树, 记录累计和, 将累计和加入当前节点上
*/
class Solution {
public TreeNode convertBST(TreeNode root) {
if(root==null)
return null;
core(root, 0);
return root;
}
public int core(TreeNode root, int preSum){
if(root==null)
return 0;
//右; 新条件新递归
int rightRes = core(root.right, preSum);

//根; 当前条件
//记录当前节点的原始值
int old = root.val;
//更新当前节点的值
root.val = root.val + rightRes + preSum;

//左; 新条件新递归
int leftRes = core(root.left, root.val);

//核心: 返回的是以root为根的子树的原始值的和
return leftRes + old + rightRes;
}
}