从技术的角度重新看英伟达生态,有很多值得借鉴的方面。本文将主要从流水编排、SIMT 前端、分支预测和交互方式等方面进行分析,同时对比 DSA 架构,思考可以从英伟达 CUDA 中借鉴的要点。

英伟达生态的思考点

从软件和硬件架构的角度出发,CUDA 和 SIMT 之间存在一定的关系,而目前 AI 芯片采用的 DSA 架构在编程模型和硬件执行模型上还处于较为早期的状态,英伟达强大的生态同样离不开 CUDA 在编程方面的易用性。

面对新的 AI 芯片,在流水隐藏方面,实现架构层面的隐藏流水编排机制,提出一个形式上与 SPMD 没有关系的编程模式,而且易用性堪比 CUDA 的软件是可能的。但是反过来在核心问题上没有得到解决,提出形式上与 CUDA 类似的编程模型也仍然会有易用性的问题,开发者很难获得一个足够好的初始性能。

在软硬件架构方面,对于 DSA 架构而言,一方面需要建立一套开放的软硬件架构,联合其他 DSA 架构一起对抗 CUDA 生态;另一方面需要明确面向不同层级开发者的易用性和软件开发形态。

SIMT 与 CUDA 的关系

英伟达为了维护 CUDA 生态对 SIMT 硬件架构做出了调整和取舍,因此 CUDA 会在一定程度上对英伟达硬件架构产生约束,例如保留 SM、Warp、Thread 等线程分层概念。CUDA 架构在近几年没有做出重大的改变,主要是维护编程体系软件对外的抽象和易用性。

DSA 之所以在硬件架构的指令和设计上比较激进,并非软件体系做得好,而是在刚开始并没有太多地考虑编程体系的问题,自然没有为了实现软硬件协同带来的架构约束。CUDA 的成功之处在于通过 SIMT 架构掩盖了流水编排、并行指令隐藏以及 CUDA 的易用性。

DSA 硬件架构执行方式

DSA 硬件架构一般是指单核单线程,线程内指令可以通过多核共享 Cache 协作。编程模型上缺乏统一的标准,因此需要专门搭建编译器和编程体系,硬件主要以 AI 加速芯片(TPU、NPU 等)为主。

关于 DSA 的硬件执行方式,DSA 硬件目前的裸接口一般是每个核一个线程,每个线程内串行调 DSA 指令集,指令在硬件上通常会分发到不同的指令执行流水线上,正确性部分靠软件同步实现,部分靠硬件保证。

CUDA 客户能力区分

按照使用 CUDA 的难易程度,可以将 CUDA 的使用用户分为三类,分别是初阶、中阶和高阶用户。

  • 初阶用户:掌握 CUDA 并行编程能力,了解 NV SIMT 硬件基础架构,可以拿到并行指令、流水掩盖、并行计算三部分性能。
  • 中阶用户:进一步运用 CUDA 提供的切块 Tiling、流水 Pipeline 能力,进一步获取更高的性能收益。
  • 高阶用户:深入了解 SIMT 微架构细节,解决线程 bank 冲突、精细化流水掩盖、精细化指令使用、极致的切块 Tiling 策略,从而实现极致性能。

CUDA 在开发方面具有很好的易用性,以下是使用 CPU 编写的矩阵加法运算:

void add_matrix(float* a, float* b, float* c, int N) {
    int index;

    for (int i = 0; i < N; ++i) {
        index = i + j * N;
        c[index] = a[index] + b[index];
    }
}

int main()
{
    add_matrix(a, b, c, N);
}

以下是使用 GPU 编写的矩阵加法运算,与 CPU 编程相比,因为使用的是并行计算,所以没有 for 循环:

__global__ void add_matrix(float* a, float* b, float* c, int N) {
    // Calculate the global indices
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    int index = i + j * N;

    // Check if the indices are within bounds
    if (i < N && j < N) {
        // Perform matrix addition
        c[index] = a[index] + b[index];
    }
}

int main() {
    dim3 dimBlock(blocksize, blocksize);

    // Calculate the grid size
    dim3 dimGrid((N + dimBlock.x - 1) / dimBlock.x, (N + dimBlock.y - 1) / dimBlock.y);

    // Launch the kernel
    add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);
}

结合优秀的硬件架构和软件生态,英伟达 GPU 和 CUDA 是 SIMT 最成功的实践。

借鉴与思考点

流水编排

在指令流水线编排方面,最重要的是从硬件设计上解决 SIMD data path 流水编排问题。程序执行最大的瓶颈是访存和控制流,单线程 CPU 需要大量资源进行分支预测、超前执行、缓存、预取等机制来缓解访存和控制流遇到的瓶颈。SIMD 往往依赖 CPU 自身乱序、投机、缓存和预取等能力来缓解。英伟达 GPU 则是依靠多线程交错执行提升整体并行计算的性能,大量的线程通过不同的 block 和不同的线程读取数据和执行计算指令。

【AI系统】从 CUDA 对 AI 芯片思考_CUDA

即使在 DSA 上为 SIMD 硬件封装了 SIMT 前端,如果遇到执行指令有依赖,基础性能也会非常差,流水编排仍然需要开发者动手,想写出开箱即用,性能较优的代码同样很难。

SIMT 前端硬件

增加了 SIMT 前端硬件,通过线程组 Warp 隐藏线程指令流水。在 CUDA 编程模型中,每一个线程块(thread block)内部需要有很多并行线程,隐式分成了若干个 Warp,每个 Warp 包含串行交错的访存和计算。GPU 通过 Warp Scheduler 动态交错执行,如果一组 Warp0 流水阻塞就会切到下一个 Warp1,隐式通过 Warp 的并行掩盖指令流水阻塞,因此开发者可以得到较好的性能。

【AI系统】从 CUDA 对 AI 芯片思考_易用性_02

DSA 硬件架构同样可以引入 Warp Scheduler 进行指令流水掩盖,让每个 DSA 核执行多个线程,相互掩盖流水线阻塞。英伟达 GPU 使用 Warp 来掩盖指令流水是基于运行时的具体信息,而开发者和编译器只能基于静态信息进行流水编排,很难做到足够均衡,使得 SIMD/DSA 在进行手工或者编译器自动流水编排时相对困难,资深开发者也很难把流水编排得足够好。

增加 SIMT 前端硬件同样会带来开销,但是可以实现流水阻塞掩盖,通过 SIMT 表达将接口暴露给用户,让用户主动写多线程,warp scheduler 在硬件层面实现多线程相互掩盖流水阻塞。SIMD 指令掩盖可以通过 SIMT 表达实现用户写通用单线程,同时 warp 分组组成 SIMD 指令。

【AI系统】从 CUDA 对 AI 芯片思考_英伟达_03

但是 CUDA 没有解决 DSA 指令掩盖,目前只是通过给开发者一个 Warp 概念,透传指令 API 来解决表达和使用的问题,因此 CUDA 的上手门槛并不低,需要在前期充分了解英伟达 GPU 的硬件细节。

分支预测机制

SPMD 编程模型对分支预测和控制流的高容忍度是支撑易用性的重要手段,减少分支和连续访存是软件层面、易用性方面需要关注的优化点。当然,在 SIMD 的硬件上同样可以通过 Predicate/mask、 gather/scatter 指令和 memory coalescing 来实现,通过编译器实现分支预测从而让开发者无感,但是在 SIMD 线程数量有限的情况下,性能的提升可能会是个难题。

英伟达 GPU 可以使线程在 Warp-base SIMD 上执行不同的分支,每个线程都可以执行带条件控制流指令(Conditional Control Flow Instructions),同时不同线程间可以分别执行不同的控制流路径(Different Control Flow Paths),比如分别执行不同的 Thread W,Thread X 和 Thread Y 控制流执行路径。

【AI系统】从 CUDA 对 AI 芯片思考_易用性_04

但是 SIMT 的控制流仍然存在很多问题,因此不推荐在 CUDA 编程中出现大量的 if/else 语句。通常使用 SIMD 流水线来节省控制逻辑上的面积,例如将 Scalar 线程放在 Warps 里面。当 Warp 内部的线程分支到不同的执行路径时,就会发生分支执行冲突,比如当存在 Path 1 和 Path 2 两个分支路径时,可以使得不同时间执行不同的路径,但是这样会增加时耗。

【AI系统】从 CUDA 对 AI 芯片思考_英伟达_05

为了解决分支预测的问题,动态 Warp Formating/Merging 在分支后动态合并执行相同指令的线程,从正在等待的 Warps 中形成新的 Warps,分支下每条路径线程用于创建新的 Warp。可以将 Warp X 和 Warp Y 合并为 Warp Z,从而更好地执行相同指令。

【AI系统】从 CUDA 对 AI 芯片思考_英伟达_06

当存在 Path 1 和 Path 2 两条路径的时候,由于某些时钟周期为空,因此在动态合并分支之后执行相同指令的线程,以便同时执行不同的代码路径,从而避免线程之间的等待和资源浪费。

【AI系统】从 CUDA 对 AI 芯片思考_CUDA_07

动态 Warp 分组(Dynamic Warp Formation)更多是在编译器层面解决分支预测的问题,根据线程执行情况和数据依赖性动态组织 Warp 中的线程,以提高并行计算性能和资源利用率,优化 GPU 计算,提高程序的执行效率。

【AI系统】从 CUDA 对 AI 芯片思考_易用性_08

交互方式

CUDA 可以提供 host(CPU)和 device(GPU)之间便利的交互方式,CUDA 中有很多实现机制与 SIMT、SIMD、DSA 的硬件架构本身并没有太多关系。CUDA 中的所有特性也不是 SIMT 架构独有的,因此不存在技术上选择 SIMT、SIMD、DSA 与硬件强行绑定等问题。比如 CUDA Runtime 提供 host 和 device 的 C++ 交互方式,如寒武纪 BANG C 语言在这个层面就参考了 CUDA。在软件层面的交互上,CUDA 可以很容易地实现向量加法:

for (int i = 0; i < 10000; ++i) {
    C[i] = A[i] + B[i];
}
#include <stdio.h>

// 定义向量大小
#define N 5

// CUDA 核函数,用于执行向量加法
__global__ void vectorAdd(int *a, int *b, int *c) {
    int i = blockDim.x * threadDim.x + threadIdx.x;

    if (i < N) {
        c[i] = a[i] + b[i];
    }
}

int main() {
    int a[N], b[N], c[N];
    int *d_a, *d_b, *d_c;

    // 在设备上分配内存
    cudaMalloc((void**)&d_a, N * sizeof(int));
    cudaMalloc((void**)&d_b, N * sizeof(int));
    cudaMalloc((void**)&d_c, N * sizeof(int));

    // 初始化向量 a 和 b
    for (int i = 0; i < N; i++) {
        a[i] = i;
        b[i] = N - i;
    }

    // 将向量 a 和 b 复制到设备
    cudaMemcpy(d_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
    cudaMemcpy(d_b, b, N * sizeof(int), cudaMemcpyHostToDevice);

    // 调用 CUDA 核函数
    vectorAdd<<<1, N>>>(d_a, d_b, d_c);

    // 将结果从设备复制回主机
    cudaMemcpy(c, d_c, N * sizeof(int), cudaMemcpyDeviceToHost);

    // 打印结果
    for (int i = 0; i < N; i++) {
        printf("%d ", c[i]);
    }
    printf("\n");

    // 释放设备上的内存
    cudaFree(d_a);
    cudaFree(d_b);
    cudaFree(d_c);

    return 0;
}

CUDA 同时具有编程开发的易用性,对初阶用户而言,CUDA 的易用性是极致的,入门开发者任意写一个简单的算子(Kernel),就能够获得比 CPU 高 5~10 倍的峰值性能。

因为 DSA 硬件架构在流水和指令使用上缺乏完备、隐式的支持,指令流水的支持需要开发者通过手工掩盖、切块等其他优化思想补齐这部分性能,而使用底层指令则会让用户在写出正确的 Kernel 时花费更多的时间。