使用 Embedchain 的易用 CLI 工具开始全栈 RAG 应用开发。无论是否偏好 Docker,只需几个命令即可设置一切。
Embedchain 现在支持与的集成。要使用 LangSmith,您需要执行以下步骤。让我们详细介绍每个步骤。首先确保您已创建 LangSmith 账户并
在本例中,我们将学习如何一起使用Chainlit和Embedchain。
开始使用,开源大型语言模型可观察性平台,供开发者监控、调试和优化他们的应用程序。要使用Helicone,你需要执行以下步骤
在这个例子中,我们将学习如何使用和Embedchain与Streamlit一起构建一个简单的RAG聊天机器人。
Embedchain现在支持与的集成。
开始使用Helicone,开源大型语言模型可观察性平台,供开发者监控、调试和优化他们的应用程序。 要使用Helicone,你需要执行以下步骤。 集成步骤 创建账户 + 生成API密钥 登录Helicone或创建账户。一旦你有了账户,你 可以生成一个API密钥。 确保生成一个只写API密钥。 在你的代码中设置base_url 你可以在代码库中配置你的base_url和OpenAI API密钥 i
Embedchain现在支持与OpenLIT的集成。 开始使用 1. 设置环境变量 # 为OpenTelemetry目的地和身份验证设置环境变量。 export OTEL_EXPORTER_OTLP_ENDPOINT = "YOUR_OTEL_ENDPOINT" export OTEL_EXPORTER_OTLP_HEADERS = "YOUR_OTEL_ENDPOI
在这个例子中,我们将学习如何使用mistralai/Mixtral-8x7B-Instruct-v0.1和Embedchain与Streamlit一起构建一个简单的RAG聊天机器人。 设置 安装Embedchain和Streamlit。 pip install embedchain streamlit app.py import os from embedchain import App imp
在本例中,我们将学习如何一起使用Chainlit和Embedchain。 设置 首先,安装所需的包: pip install embedchain chainlit 创建Chainlit应用 创建一个名为app.py的新文件,并添加以下代码: import chainlit as cl from embedchain import App import os os.environ[&quo
本节提供了一个快速入门示例,展示了如何使用 Mistral 作为开源 LLM(大型语言模型)和 Sentence transformers 作为开建一个。
Embedchain 现在支持与 LangSmith 的集成。 要使用 LangSmith,您需要执行以下步骤。 在 LangSmith 上拥有一个账户并准备好环境变量 在您的应用中设置环境变量,以便 embedchain 了解上下文 只需使用 embedchain,一切将自动记录到 LangSmith,以便您可以更好地测试和监控您的应用 让我们详细介绍每个步骤。 首先确保您已创建 Lan
使用 Embedchain 的易用 CLI 工具开始全栈 RAG 应用开发。无论是否偏好 Docker,只需几个命令即可设置一切。 先决条件 选择您的设置方法: 不使用 Docker 使用 Docker 不使用 Docker 确保已安装以下内容: Embedchain python 包 (pip install embedchain) Node.js 和 Yarn 使用 Docker 从
Embedchain 是一个开源框架,它简化了创建和部署个性化人工智能应用的过程。其核心设计原则是“常规但可配置”,旨在同时服务于软件工程师和
Embedchain 支持 OpenAI 的 Assistant API 吗? 是的,支持。请参考 OpenAI Assistant 文档页面。 如何使用 MistralAI 语言模型? 使用 Hugging Face 提供的模型:mistralai/Mistral-7B-v0.1 import os from embedchain import App os.environ["HUG
Copyright © 2005-2025 51CTO.COM 版权所有 京ICP证060544号