论文1: ChatGPT's One-year Anniversary: Are Open-Source Large Language Models Catching up?
简介
2022年11月,OpenAI发布了ChatGPT,这一事件在AI社区甚至全世界引起了轰动。首次,一个基于应用的AI聊天机器人能够提供有帮助、安全和有用的答案,遵循人类指令,甚至承认并纠正之前的错误。作为第一个这样的应用,ChatGPT在其推出仅两个月内,用户数量就达到了1亿,远远快于其他流行应用如TikTok或YouTube。因此,它也吸引了巨额的商业投资,因为它有望降低劳动成本,自动化工作流程,甚至为客户带来新的体验。
但ChatGPT的闭源特性可能引发诸多问题。首先,由于不了解内部细节,比如预训练和微调过程,很难正确评估其潜在风险,尤其是考虑到大模型可能生成有害、不道德和虚假的内容。其次,有报道称ChatGPT的性能随时间变化,妨碍了可重复的结果。第三,ChatGPT经历了多次故障,仅在2023年11月就发生了两次重大故障,期间无法访问ChatGPT网站及其API。最后,采用ChatGPT的企业可能会关注API调用的高成本、服务中断、数据所有权和隐私问题,以及其他不可预测的事件,比如最近有关CEO Sam Altman被解雇并最终回归的董事会闹剧。
此时,开源大模型应运而生,社区一直在积极推动将高性能的大模型保持开源。然而,截至2023年末,大家还普遍认为类似Llama-2或Falcon这样的开源大模型在性能上落后于它们的闭源模型,如OpenAI的GPT3.5(ChatGPT)和GPT-4,Anthropic的Claude2或Google的Bard3,其中GPT-4通常被认为是最出色的。然而,令人鼓舞的是差距正在变得越来越小,开源大模型正在迅速赶上。
更有趣的 AI Agent
- Generative Agents: Interactive Simulacra of Human Behavior https://arxiv.org/abs/2304.03442
- RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large Language Models https://arxiv.org/abs/2310.00746
- Role play with large language models https://www.nature.com/articles/s41586-023-06647-8
- Exploring Large Language Models for Communication Games: An Empirical Study on Werewolf https://arxiv.org/abs/2309.04658
- MemGPT: Towards LLMs as Operating Systems https://arxiv.org/abs/2310.08560
- Augmenting Language Models with Long-Term Memory https://arxiv.org/abs/2306.07174
- Do LLMs Possess a Personality? Making the MBTI Test an Amazing Evaluation for Large Language Models https://arxiv.org/pdf/2307.16180.pdf
更有用的 AI Agent
- The Rise and Potential of Large Language Model Based Agents: A Survey https://arxiv.org/abs/2309.07864
- MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework https://arxiv.org/abs/2308.00352
- Communicative Agents for Software Development https://arxiv.org/pdf/2307.07924.pdf
- Large Language Models Can Self-Improve https://arxiv.org/abs/2210.11610
- Evaluating Human-Language Model Interaction https://arxiv.org/abs/2212.09746
- Large Language Models can Learn Rules https://arxiv.org/abs/2310.07064
- AgentBench: Evaluating LLMs as Agents https://arxiv.org/abs/2308.03688
- WebArena: A Realistic Web Environment for Building Autonomous Agents https://arxiv.org/abs/2307.13854
- TableGPT: Towards Unifying Tables, Nature Language and Commands into One GPT https://arxiv.org/abs/2307.08674
任务规划与分解
- Chain-of-Thought Prompting Elicits Reasoning in Large Language Models https://arxiv.org/abs/2201.11903
- Tree of Thoughts: Deliberate Problem Solving with Large Language Models https://arxiv.org/abs/2305.10601
- Implicit Chain of Thought Reasoning via Knowledge Distillation https://arxiv.org/abs/2311.01460
- ReAct: Synergizing Reasoning and Acting in Language Models https://arxiv.org/abs/2210.03629
- ART: Automatic multi-step reasoning and tool-use for large language models https://arxiv.org/abs/2303.09014
- Branch-Solve-Merge Improves Large Language Model Evaluation and Generation https://arxiv.org/abs/2310.15123
- WizardLM: Empowering Large Language Models to Follow Complex Instructionshttps://arxiv.org/pdf/2304.12244.pdf
幻觉
- Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Language Modelshttps://arxiv.org/pdf/2309.01219.pdf
- Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback https://arxiv.org/abs/2302.12813
- SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models https://arxiv.org/abs/2303.08896
- WebBrain: Learning to Generate Factually Correct Articles for Queries by Grounding on Large Web Corpus https://arxiv.org/abs/2304.04358
多模态
- Learning Transferable Visual Models From Natural Language Supervision (CLIP) https://arxiv.org/abs/2103.00020
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ViT): https://arxiv.org/abs/2010.11929
- MiniGPT-v2: large language model as a unified interface for vision-language multi-task learninghttps://arxiv.org/abs/2310.09478
- MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models https://arxiv.org/abs/2304.10592
- NExT-GPT: Any-to-Any Multimodal LLM https://arxiv.org/pdf/2309.05519.pdf
- Visual Instruction Tuning (LLaVA) https://arxiv.org/pdf/2304.08485.pdf
- Improved Baselines with Visual Instruction Tuning (LLaVA-1.5) https://arxiv.org/abs/2310.03744
- Sequential Modeling Enables Scalable Learning for Large Vision Models (LVM) https://arxiv.org/pdf/2312.00785.pdf
- CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation https://arxiv.org/pdf/2311.18775.pdf
- Neural Discrete Representation Learning (VQ-VAE) https://browse.arxiv.org/pdf/1711.00937.pdf
- Taming Transformers for High-Resolution Image Synthesis (VQ-GAN) https://arxiv.org/abs/2012.09841
- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows https://arxiv.org/abs/2103.14030
- BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models https://browse.arxiv.org/pdf/2301.12597.pdf
- InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning https://browse.arxiv.org/pdf/2305.06500.pdf
- ImageBind: One Embedding Space To Bind Them All https://arxiv.org/abs/2305.05665
- Meta-Transformer: A Unified Framework for Multimodal Learning https://arxiv.org/abs/2307.10802
图片/视频生成
- High-Resolution Image Synthesis with Latent Diffusion Models https://arxiv.org/pdf/2112.10752.pdf
- Structure and Content-Guided Video Synthesis with Diffusion Models (RunwayML Gen1) https://browse.arxiv.org/pdf/2302.03011.pdf
- Hierarchical Text-Conditional Image Generation with CLIP Latents (DaLLE-2) https://arxiv.org/pdf/2204.06125.pdf
- AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning https://arxiv.org/abs/2307.04725
- Adding Conditional Control to Text-to-Image Diffusion Models (ControlNet) https://arxiv.org/abs/2302.05543
- SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesishttps://arxiv.org/abs/2307.01952
- Zero-1-to-3: Zero-shot One Image to 3D Object https://arxiv.org/abs/2303.11328
- Scaling Vision Transformers to 22 Billion Parameters https://arxiv.org/abs/2302.05442
- Glow: Generative Flow with Invertible 1×1 Convolutions https://browse.arxiv.org/pdf/1807.03039.pdf
- Language Model Beats Diffusion – Tokenizer is Key to Visual Generation https://arxiv.org/pdf/2310.05737.pdf
- InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generationhttps://arxiv.org/pdf/2309.06380.pdf
- Perceptual Losses for Real-Time Style Transfer and Super-Resolution https://arxiv.org/pdf/1603.08155.pdf
- CogView: Mastering Text-to-Image Generation via Transformers https://arxiv.org/abs/2105.13290
- Diffusion Models for Video Prediction and Infilling https://arxiv.org/abs/2206.07696
语音合成
- Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech (VITS)https://browse.arxiv.org/pdf/2106.06103.pdf
- Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers (VALL-E)https://arxiv.org/abs/2301.02111
- Speak Foreign Languages with Your Own Voice: Cross-Lingual Neural Codec Language Modeling (VALL-E X) https://arxiv.org/pdf/2303.03926.pdf
- MusicLM: Generating Music From Text https://arxiv.org/abs/2301.11325
大模型基础
- Attention Is All You Need https://arxiv.org/abs/1706.03762
- Sequence to Sequence Learning with Neural Networks https://arxiv.org/abs/1409.3215
- Neural Machine Translation by Jointly Learning to Align and Translate https://arxiv.org/abs/1409.0473
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding https://arxiv.org/abs/1810.04805
- Scaling Laws for Neural Language Models https://arxiv.org/pdf/2001.08361.pdf
- Emergent Abilities of Large Language Models https://openreview.net/pdf?id=yzkSU5zdwD
- Training Compute-Optimal Large Language Models (ChinChilla scaling law) https://arxiv.org/abs/2203.15556
- Scaling Instruction-Finetuned Language Models https://arxiv.org/pdf/2210.11416.pdf
- Direct Preference Optimization:
- Your Language Model is Secretly a Reward Model https://arxiv.org/pdf/2305.18290.pdf
- Progress measures for grokking via mechanistic interpretability https://arxiv.org/abs/2301.05217
- Language Models Represent Space and Time https://arxiv.org/abs/2310.02207
- GLaM: Efficient Scaling of Language Models with Mixture-of-Experts https://arxiv.org/abs/2112.06905
- Adam: A Method for Stochastic Optimization https://arxiv.org/abs/1412.6980
- Efficient Estimation of Word Representations in Vector Space (Word2Vec) https://arxiv.org/abs/1301.3781
- Distributed Representations of Words and Phrases and their Compositionality https://arxiv.org/abs/1310.4546
GPT
- Language Models are Few-Shot Learners (GPT-3) https://arxiv.org/abs/2005.14165
- Language Models are Unsupervised Multitask Learners (GPT-2) https:///better-language-models/language_models_are_unsupervised_multitask_learners.pdf
- Improving Language Understanding by Generative Pre-Training (GPT-1) https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
- Training language models to follow instructions with human feedback (InstructGPT)https://arxiv.org/pdf/2203.02155.pdf
- Evaluating Large Language Models Trained on Code https://arxiv.org/pdf/2107.03374.pdf
- Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond https://arxiv.org/abs/2304.13712
- Instruction Tuning with GPT-4 https://arxiv.org/pdf/2304.03277.pdf
- The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) https://arxiv.org/abs/2309.17421
- Sparks of Artificial General Intelligence: Early experiments with GPT-4 https://arxiv.org/abs/2303.12712
- Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision https://arxiv.org/abs/2312.09390
开源大模型
- LLaMA: Open and Efficient Foundation Language Models https://arxiv.org/abs/2302.13971
- Llama 2: Open Foundation and Fine-Tuned Chat Models https://arxiv.org/pdf/2307.09288.pdf
- Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality https://lmsys.org/blog/2023-03-30-vicuna/
- LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset https://arxiv.org/abs/2309.11998
- Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena https://arxiv.org/abs/2306.05685
- How Long Can Open-Source LLMs Truly Promise on Context Length? https://lmsys.org/blog/2023-06-29-longchat/
- Mixtral of experts https://mistral.ai/news/mixtral-of-experts/
- OpenChat: Advancing Open-source Language Models with Mixed-Quality Data https://arxiv.org/abs/2309.11235
- RWKV: Reinventing RNNs for the Transformer Era https://arxiv.org/abs/2305.13048
- Mamba: Linear-Time Sequence Modeling with Selective State Spaces https://arxiv.org/ftp/arxiv/papers/2312/2312.00752.pdf
- Retentive Network: A Successor to Transformer for Large Language Models https://arxiv.org/abs/2307.08621
- Baichuan 2: Open Large-scale Language Models https://arxiv.org/abs/2309.10305
- GLM-130B: An Open Bilingual Pre-trained Model https://arxiv.org/abs/2210.02414
- Qwen Technical Report https://arxiv.org/abs/2309.16609
- Skywork: A More Open Bilingual Foundation Model https://arxiv.org/abs/2310.19341
微调
- Learning to summarize from human feedback https://arxiv.org/abs/2009.01325
- Self-Instruct: Aligning Language Model with Self Generated Instruction https://arxiv.org/abs/2212.10560
- Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning https://arxiv.org/abs/2303.15647
- LoRA: Low-Rank Adaptation of Large Language Models https://arxiv.org/abs/2106.09685
- Vera: Vector-Based Random Matrix Adapation https://arxiv.org/pdf/2310.11454.pdf
- QLoRA: Efficient Finetuning of Quantized LLMs https://arxiv.org/abs/2305.14314
- Chain of Hindsight Aligns Language Models with Feedback https://arxiv.org/abs/2302.02676
- Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models https://arxiv.org/pdf/2312.06585.pdf
性能优化
- Efficient Memory Management for Large Language Model Serving with PagedAttention (vLLM) https://arxiv.org/abs/2309.06180
- FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness https://arxiv.org/abs/2205.14135
- S-LoRA: Serving Thousands of Concurrent LoRA Adapters https://arxiv.org/abs/2311.03285
- GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
- Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism https://arxiv.org/pdf/1909.08053.pdf
- ZeRO: Memory Optimizations Toward Training Trillion Parameter Models https://arxiv.org/pdf/1910.02054.pdf