线上OJ:

【07NOIP普及组】Hanoi双塔问题

题解分析

1、本题考的其实不是Hanoi塔,而是瞪眼法(数学推导)和高精度。 2、本题不需要输出移动的顺序,只是输出移动的次数即可。

2007NOIP普及组真题 4. Hanoi双塔问题_算法

核心思想:

1、从上述图中,我们可以推导出:2007NOIP普及组真题 4. Hanoi双塔问题_信奥_02;
2、由于本题是双塔,每个圆盘有两个,所以Step2的第 i+1 个要移动两次,即 2007NOIP普及组真题 4. Hanoi双塔问题_c++_03
3、由 ① 式已经可以直接写代码完成。但我们仍可继续简化公式。
4、根据 ① 式,我们可推出 f[1] = 2, f[2] = 6, f[3] = 14, f[4] = 30。 即 2007NOIP普及组真题 4. Hanoi双塔问题_c++_04
5、所以,我们只要根据 n ,直接输出 ② 式的结果即可。(以上为瞪眼法推导结果,至此写出的代码,可拿25分)
6、但本题的 n 会取到200,2007NOIP普及组真题 4. Hanoi双塔问题_信奥_05 非常大,预计数字会达到60位~70位(2007NOIP普及组真题 4. Hanoi双塔问题_算法_06)。所以剩下的75分需要用高精度
7、高精度的计算方法 可根据下图推导:

2007NOIP普及组真题 4. Hanoi双塔问题_算法_07

a. 用字符数组 s[] 来存储计算结果的每一位,个位在s[99],十位在s[98],百位在s[97]......
b. 用 len 来存储计算结果的位数
c. 计算时考虑进位

解法一、高精度
#include <bits/stdc++.h>
using namespace std;

int n, len = 1; // len表示结果的位数,比如结果是30(就是2位),比如结果是126(就是3位)。先初始化结果位数为1
char s[100];   // 用字符数组来存储结果每一位,比如结果是30,则s[98]='3',s[99]='0'; 比如结果是126,则s[97]='1',s[98]='2',s[99]='6';

int main()
{
    cin >> n;
    s[99] = '2'; // 将数组的最后一个元素初始化为'2',表示n为1时的输出

    // 计算 2^(n+1)
    for(int i = 2; i <= n+1; i++)
    {
        int a = 0; // 存储*2后的结果,比如2*8=16,则a=16
        int c = 0; // 存储进位的数字,比如2*8=16,则c=1
        int j;  // j定义在for循环外,多一位进位时可直接赋值
        
        // 把当前结果从个位开始*2 
        for(j = 99; j > 99 - len; j--)  // s[99] 存储的是个位数,s[98]存储的是十位,s[97]存储的是百位...
        {
            a = (s[j] - '0') * 2 + c;
            s[j] = a % 10 + '0';  // *2后的个位存回原处
            c = a / 10; // *2后的进位存放于c,下一轮用
        }

        if (c != 0) // 如果退出循环时,还有进位,说明 len 要增加。(比如64*2=128,结果的位数从2变为3)
        {
            s[j] = c + '0';
            len++;  // 进位之后,数字的位数要+1
        }
    }
    s[99] -= 2; // 最后一位ascii字符-2(此处减法不需要考虑借位,因为2^n末位只有2,4,6,8,都足以减去2)
    
    // 输出结果,如果结果是30,则len是2,输出s[98]='3',s[99]='0'。如果结果是126,则len是3,输出s[97]='1',s[98]='2',s[99]='6'
    for(int i = 100 - len; i < 100 ; i++)  cout << s[i];
    return 0;
}
解法二、利用 streamstring 流

首先:已知 待输出的结果 = 2^(n+1) - 2
我们利用stringstream对象的自动类型转换,它的内部有一个string的流对象缓冲区
输入时( s << ):自动识别右边输入的变量类型并 自动 转换为string
输出时( s >> ):自动识别右边输出的变量类型并 自动 转换后赋值

#include <bits/stdc++.h>
using namespace std;

int n;
stringstream s;
string a;

int main()
{
    cin >> n;
           // 先利用 stringstream 的特性,把超常的计算结果缓冲到 string 流对象缓冲区
    s << fixed << setprecision(0) << pow(2, n+1);  // fixed + setprecision(0) 表示小数点后为0位
    s >> a;  // 再利用 stringstream 的特性,把 string 流对象缓冲区的内容输出到 string a
    a[a.size()-1] -= 2;   // 最后一位ascii字符-2(此处减法不需要考虑借位,因为2^n末位只有2,4,6,8,都足以减去2)  cout << a;

    cout << a << endl;
    return 0;
}