1、MySQL有哪些数据库类型?
数值类型
有包括 TINYINT、SMALLINT、MEDIUMINT、INT、BIGINT,分别表示 1 字节、2 字节、3 字节、4 字节、8 字节的整数类型。
1)任何整数类型都可以加上 UNSIGNED 属性,表示无符号整数。
2)任何整数类型都可以指定长度,但它不会限制数据的合法长度,仅仅限制了显示长度。
还有包括 FLOAT、DOUBLE、DECIMAL 在内的小数类型。
字符串类型
包括 VARCHAR、CHAR、TEXT、BLOB。
注意:VARCHAR(n) 和 CHAR(n) 中的 n 并不代表字节个数,而是代表字符的个数。
日期和时间类型
常用于表示日期和时间类型为 DATETIME、DATE 和 TIMESTAMP。
尽量使用 TIMESTAMP,空间效率高于 DATETIME。
ref MySQL 数据类型
2、CHAR 和 VARCHAR 区别?
1)首先可以明确的是 CHAR 是定长的,而 VARCHAR 是可以变长。
CHAR 会根据声明的字符串长度分配空间,并会使用空格对字符串右边进行尾部填充。所以在检索 CHAR 类型数据时尾部空格会被删除,如保存的是字符串 'char ',但最后查询到的是 'char'。又因为长度固定,所以存储效率高于 VARCHAR 类型。
VARCHAR 在 MySQL 5.0 之后长度支持到 65535 字节,但会在数据开头使用额外 1~2 个字节存储字符串长度(列长度小于 255 字节时使用 1 字节表示,否则 2 字节),在结尾使用 1 字节表示字符串结束。
2)再者,在存储方式上,CHAR 对英文字符(ASCII)占用 1 字节,对一个汉字使用用 2 字节。而 VARCHAR 对每个字符均使用 2 字节。
虽然 VARCHAR 是根据字符串长度分配存储空间的,但在内存中依旧使用声明长度进行排序等作业,故在使用时仍需综合考量字段长度。
3、CHAR 和 VARCHAR 如何选择?
1)对于经常变更的数据来说,CHAR 比 VARCHAR更好,因为 CHAR 不容易产生碎片。
2)对于非常短的列或固定长度的数据(如 MD5),CHAR 比 VARCHAR 在存储空间上更有效率。
4)使用时要注意只分配需要的空间,更长的列排序时会消耗更多内存。
4)尽量避免使用 TEXT/BLOB 类型,查询时会使用临时表,导致严重的性能开销。
4、CHAR,VARCHAR 和 Text 的区别?
1)长度区别
Char 范围是 0~255。
Varchar 最长是 64k(注意这里的 64k 是整个 row 的长度,要考虑到其它的 column,还有如果存在 not null 的时候也会占用一位,对不同的字符集,有效长度还不一样,比如 utf-8 的,最多 21845,还要除去别的column),但 Varchar 在一般情况下存储都够用了。
如果遇到了大文本,考虑使用 Text,最大能到 4G(其中 TEXT 长度 65,535 bytes,约 64kb;MEDIUMTEXT 长度 16,777,215 bytes,约 16 Mb;而 LONGTEXT 长度 4,294,967,295 bytes,约 4Gb)。
2)效率区别
效率来说基本是 Char > Varchar > Text,但是如果使用的是 Innodb 引擎的话,推荐使用 Varchar 代替 Char。
3)默认值区别
Char 和 Varchar 支持设置默认值,而 Text 不能指定默认值。
1.2 数据库设计
1、什么是三大范式?
第一范式(1NF):字段(或属性)是不可分割的最小单元,即不会有重复的列,体现原子性
第二范式(2NF):满足 1NF 前提下,存在一个候选码,非主属性全部依赖该候选码,即存在主键,体现唯一性,专业术语则是消除部分函数依赖
第三范式(3NF):满足 2NF 前提下,非主属性必须互不依赖,消除传递依赖
ref:如何理解关系型数据库的常见设计范式?
除了三大范式外,还有BC范式和第四范式,但其规范过于严苛,在生产中往往使用不到。
2、什么是范式和反范式,以及各自优缺点?
范式是符合某一种级别的关系模式的集合。构造数据库必须遵循一定的规则。在关系数据库中,这种规则就是范式。
名称 优点 缺点
范式 范式化的表减少了数据冗余,数据表更新操作快、占用存储空间少。 查询时通常需要多表关联查询,更难进行索引优化
反范式 反范式的过程就是通过冗余数据来提高查询性能,可以减少表关联和更好进行索引优化 存在大量冗余数据,并且数据的维护成本更高
所以在平时工作中,我们通常是将范式和反范式相互结合使用。
2 索引
首先了解一下什么是索引,索引是对数据库表中一列或多列的值进行排序的数据结构,用于快速访问数据库表中的特定信息。
1、索引的几种类型或分类?
1)从物理结构上可以分为聚集索引和非聚集索引两类:
聚簇索引指索引的键值的逻辑顺序与表中相应行的物理顺序一致,即每张表只能有一个聚簇索引,也就是我们常说的主键索引;
非聚簇索引的逻辑顺序则与数据行的物理顺序不一致。
2)从应用上可以划分为一下几类:
普通索引:MySQL 中的基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了提高查询效率。通过 ALTER TABLE table_name ADD INDEX index_name (column) 创建;
唯一索引:索引列中的值必须是唯一的,但是允许为空值。通过 ALTER TABLE table_name ADD UNIQUE index_name (column) 创建;
主键索引:特殊的唯一索引,也成聚簇索引,不允许有空值,并由数据库帮我们自动创建;
组合索引:组合表中多个字段创建的索引,遵守最左前缀匹配规则;
全文索引:只有在 MyISAM 引擎上才能使用,同时只支持 CHAR、VARCHAR、TEXT 类型字段上使用。
2、索引的优缺点?
先来说说优点:创建索引可以大大提高系统的性能。
通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
既然增加索引有如此多的优点,为什么不对表中的每一个列都创建一个索引呢?这是因为索引也是有缺点的:
创建和维护索引需要耗费时间,这种时间随着数据量的增加而增加,这样就降低了数据的维护速度。
索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间。如果要建立聚簇索引,那么需要的空间就会更大。
3、索引设计原则?
选择唯一性索引;
唯一性索引的值是唯一的,可以更快速的通过该索引来确定某条记录。
为常作为查询条件的字段建立索引;
如果某个字段经常用来做查询条件,那么该字段的查询速度会影响整个表的查询速度。因此,为这样的字段建立索引,可以提高整个表的查询速度。
为经常需要排序、分组和联合操作的字段建立索引;
经常需要 ORDER BY、GROUP BY、DISTINCT 和 UNION 等操作的字段,排序操作会浪费很多时间。如果为其建立索引,可以有效地避免排序操作。
限制索引的数目;
每个索引都需要占⽤用磁盘空间,索引越多,需要的磁盘空间就越大,修改表时,对索引的重构和更新很麻烦。
小表不建议索引(如数量级在百万以内);
由于数据较小,查询花费的时间可能比遍历索引的时间还要短,索引可能不会产生优化效果。
尽量使用数据量少的索引;
如果索引的值很长,那么查询的速度会受到影响。此时尽量使用前缀索引。
删除不再使用或者很少使用的索引。
4、索引的数据结构?
索引的数据结构和具体存储引擎的实现有关,MySQL 中常用的是 Hash 和 B+ 树索引。
Hash 索引底层就是 Hash 表,进行查询时调用 Hash 函数获取到相应的键值(对应地址),然后回表查询获得实际数据.
B+ 树索引底层实现原理是多路平衡查找树,对于每一次的查询都是从根节点出发,查询到叶子节点方可以获得所查键值,最后查询判断是否需要回表查询.
5、Hash 和 B+ 树索引的区别?
Hash
1)Hash 进行等值查询更快,但无法进行范围查询。因为经过 Hash 函数建立索引之后,索引的顺序与原顺序无法保持一致,故不能支持范围查询。同理,也不支持使用索引进行排序。
2)Hash 不支持模糊查询以及多列索引的最左前缀匹配,因为 Hash 函数的值不可预测,如 AA 和 AB 的算出的值没有相关性。
3)Hash 任何时候都避免不了回表查询数据.
4)虽然在等值上查询效率高,但性能不稳定,因为当某个键值存在大量重复时,产生 Hash 碰撞,此时查询效率反而可能降低。
B+ Tree
1)B+ 树本质是一棵查找树,自然支持范围查询和排序。
2)在符合某些条件(聚簇索引、覆盖索引等)时候可以只通过索引完成查询,不需要回表。
3)查询效率比较稳定,因为每次查询都是从根节点到叶子节点,且为树的高度。
6、为何使用 B+ 树而非二叉查找树做索引?
我们知道二叉树的查找效率为 O(logn),当树过高时,查找效率会下降。另外由于我们的索引文件并不小,所以是存储在磁盘上的。
文件系统需要从磁盘读取数据时,一般以页为单位进行读取,假设一个页内的数据过少,那么操作系统就需要读取更多的页,涉及磁盘随机 I/O 访问的次数就更多。将数据从磁盘读入内存涉及随机 I/O 的访问,是数据库里面成本最高的操作之一。
因而这种树高会随数据量增多急剧增加,每次更新数据又需要通过左旋和右旋维护平衡的二叉树,不太适合用于存储在磁盘上的索引文件。
7、为何使用 B+ 树而非 B 树做索引?
在此之前,先来了解一下 B+ 树和 B 树的区别:
B 树非叶子结点和叶子结点都存储数据,因此查询数据时,时间复杂度最好为 O(1),最坏为 O(log n)。而 B+ 树只在叶子结点存储数据,非叶子结点存储关键字,且不同非叶子结点的关键字可能重复,因此查询数据时,时间复杂度固定为 O(log n)。
B+ 树叶子结点之间用链表相互连接,因而只需扫描叶子结点的链表就可以完成一次遍历操作,B 树只能通过中序遍历。
为什么 B+ 树比 B 树更适合应用于数据库索引?
B+ 树减少了 IO 次数。
由于索引文件很大因此索引文件存储在磁盘上,B+ 树的非叶子结点只存关键字不存数据,因而单个页可以存储更多的关键字,即一次性读入内存的需要查找的关键字也就越多,磁盘的随机 I/O 读取次数相对就减少了。
B+ 树查询效率更稳定
由于数据只存在在叶子结点上,所以查找效率固定为 O(log n),所以 B+ 树的查询效率相比B树更加稳定。
B+ 树更加适合范围查找
B+ 树叶子结点之间用链表有序连接,所以扫描全部数据只需扫描一遍叶子结点,利于扫库和范围查询;B 树由于非叶子结点也存数据,所以只能通过中序遍历按序来扫。也就是说,对于范围查询和有序遍历而言,B+ 树的效率更高。
8、什么是最左匹配原则?
顾名思义,最左优先,以最左边为起点任何连续的索引都能匹配上。同时遇到范围查询(>、<、between、like)就会停止匹配。
如建立 (a,b,c,d) 索引,查询条件 b = 2 是匹配不到索引的,但是如果查询条件是 a = 1 and b = 2 或 a=1 又或 b = 2 and a = 1 就可以,因为优化器会自动调整 a,b 的顺序。
再比如 a = 1 and b = 2 and c > 3 and d = 4,其中 d 是用不到索引的,因为 c 是一个范围查询,它之后的字段会停止匹配。
最左匹配的原理
上图可以看出 a 是有顺序的(1、1、2、2、3、3),而 b 的值是没有顺序的(1、2、1、4、1、2)。所以 b = 2 这种查询条件无法利用索引。
同时我们还可以发现在 a 值相等的情况下(a = 1),b 又是顺序排列的,所以最左匹配原则遇上范围查询就会停止,剩下的字段都无法使用索引。
ref 最左匹配原则
9、什么是覆盖索引?
在 B+ 树的索引中,叶子节点可能存储了当前的键值,也可能存储了当前的键值以及整行的数据,这就是聚簇索引和非聚簇索引。 在 InnoDB 中,只有主键索引是聚簇索引,如果没有主键,则挑选一个唯一键建立聚簇索引。如果没有唯一键,则隐式的生成一个键来建立聚簇索引。
当查询使用聚簇索引时,在对应的叶子节点,可以获取到整行数据,因此不用再次进行回表查询。
10、什么是索引下推?
索引下推(Index condition pushdown) 简称 ICP,在 Mysql 5.6 版本上推出的一项用于优化查询的技术。
在不使用索引下推的情况下,在使用非主键索引进行查询时,存储引擎通过索引检索到数据,然后返回给 MySQL 服务器,服务器判断数据是否符合条件。
而有了索引下推之后,如果存在某些被索引列的判断条件时,MySQL 服务器将这一部分判断条件传递给存储引擎,然后由存储引擎通过判断索引是否符合 MySQL 服务器传递的条件,只有当索引符合条件时才会将数据检索出来返回给 MySQL 服务器。
索引条件下推优化可以减少存储引擎查询基础表的次数,也可以减少 MySQL 服务器从存储引擎接收数据的次数。