工地安全绳穿戴识别系统利用现场已经安好的监控摄像头,工地安全绳穿戴识别系统对监控视频画面开展实时监控分析,例如施工临边作业、洞口作业、工地攀登作业、工厂悬空作业和交叉作业等实时监控分析。工地安全绳穿戴识别系统一旦发现监控画面中相关人员并没有佩戴安全绳,系统会积极主动发给后台开启警报提示,并且同步给相关人员的手机上。

YOLOv8 算法的核心特性和改动可以归结为如下:

提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求

Backbone:
骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数。

Head: Head部分较yolov5而言有两大改进:1)换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离 2)同时也从 Anchor-Based 换成了 Anchor-Free

Loss :1) YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner正负样本匹配方式。2)并引入了 Distribution Focal Loss(DFL)

Train:训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

工地安全绳穿戴识别系统 YOLOv8_ecmascript

安全绳是工作人员在高处作业时防止坠落避免安全事故的防护设备,被很多人员称之为安全绳。安全绳由绷带、绳子和金属配件构成,称为安全绳。其主要功能是防止高空作业人员跌落,保护其不受伤害,也不会从安全带中滑脱。

class Conv(nn.Module):
    # 标准的卷积 参数(输入通道数, 输出通道数, 卷积核大小, 步长, 填充, 组, 扩张, 激活函数)
    default_act = nn.SiLU()  # 默认的激活函数

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) # 2维卷积,其中采用了自动填充函数。
        self.bn = nn.BatchNorm2d(c2) # 使得每一个batch的特征图均满足均值为0,方差为1的分布规律
        # 如果act=True 则采用默认的激活函数SiLU;如果act的类型是nn.Module,则采用传入的act; 否则不采取任何动作 (nn.Identity函数相当于f(x)=x,只用做占位,返回原始的输入)。
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() 

    def forward(self, x):  # 前向传播
        return self.act(self.bn(self.conv(x))) # 采用BatchNorm
    def forward_fuse(self, x): #  用于Model类的fuse函数融合 Conv + BN 加速推理,一般用于测试/验证阶段
        return self.act(self.conv(x)) # 不采用BatchNorm

工地安全绳穿戴识别系统依据机器视觉+边缘计算分析算法,实时分析识别视频监控图像数据,不用人工干预;及时发现监管区人员未穿戴安全绳违规行为,及时进行预警提醒,合理协助相关人员处理,最大程度地降低乱报和误报,提高后台监控作业效率,用科技手段提升安全作业的保障。