import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Conv2D, Conv2DTranspose, LeakyReLU, BatchNormalization, Input, Concatenate
from tensorflow.keras.models import Model
def build_generator():
inputs = Input(shape=(256, 256, 3))
x = Conv2D(64, 4, strides=2, padding='same', activation='relu')(inputs)
x = BatchNormalization()(x)
x = Conv2D(128, 4, strides=2, padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(256, 4, strides=2, padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(512, 4, strides=2, padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2DTranspose(256, 4, strides=2, padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2DTranspose(128, 4, strides=2, padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2DTranspose(64, 4, strides=2, padding='same', activation='relu')(x)
x = BatchNormalization()(x)
outputs = Conv2D(3, 4, strides=1, padding='same', activation='tanh')(x)
return Model(inputs, outputs)
def build_discriminator():
inputs = Input(shape=(256, 256, 3))
x = Conv2D(64, 4, strides=2, padding='same', activation='relu')(inputs)
x = LeakyReLU(alpha=0.2)(x)
x = Conv2D(128, 4, strides=2, padding='same', activation='relu')(x)
x = LeakyReLU(alpha=0.2)(x)
x = Conv2D(256, 4, strides=2, padding='same', activation='relu')(x)
x = LeakyReLU(alpha=0.2)(x)
x = Conv2D(512, 4, strides=2, padding='same', activation='relu')(x)
x = LeakyReLU(alpha=0.2)(x)
x = Conv2D(1, 4, strides=1, padding='same')(x)
return Model(inputs, x)
# Hyperparameters
epochs = 20
batch_size = 1
# Load dataset (example)
def load_data():
# Placeholder function to load dataset
return np.random.rand(10, 256, 256, 3), np.random.rand(10, 256, 256, 3)
# Initialize models
generator = build_generator()
discriminator = build_discriminator()
# Compile models
generator.compile(optimizer=tf.keras.optimizers.Adam(1e-4))
discriminator.compile(optimizer=tf.keras.optimizers.Adam(1e-4))
# Training loop
for epoch in range(epochs):
real_images, target_images = load_data()
fake_images = generator.predict(real_images)
# Train Discriminator
d_loss_real = discriminator.train_on_batch(target_images, np.ones((batch_size, 256, 256, 1)))
d_loss_fake = discriminator.train_on_batch(fake_images, np.zeros((batch_size, 256, 256, 1)))
# Train Generator
g_loss = generator.train_on_batch(real_images, np.ones((batch_size, 256, 256, 1)))
print(f'Epoch [{epoch+1}/{epochs}], D Loss Real: {d_loss_real}, D Loss Fake: {d_loss_fake}, G Loss: {g_loss}')
if (epoch + 1) % 5 == 0:
output_images = generator.predict(real_images)
for i in range(batch_size):
plt.imshow(output_images[i])
plt.axis('off')
plt.savefig(f'pix2pix_image_{epoch+1}_{i}.png')
plt.close()
6. 使用Pix2Pix进行图像转换
原创mb64cc5144d532c ©著作权
文章标签 ide tensorflow Real 文章分类 软件研发
-
Pix2Pix
1.的通用框架。Pix2Pix
深度学习 计算机视觉 机器学习 生成器 损失函数 -
GAN系列之pix2pix、pix2pixHD
1. 摘要图像处理的很多问题都是将一张输入的图片转变为一张对应的输出图片,比如灰度图、梯度图、彩色图之间的转换等。通常每一种问题都使用特
GAN pix2pix pix2pixHD 对抗生成网络 图像编辑 -
使用PyTorch和Keras实现 pix2pix GAN
对比两个框架实现同一个模型到底有什么区别?
pytorch keras 生成对抗网络 深度学习 机器学习 -
pix2pix、pix2pixHD 通过损失日志进行训练可视化
背景pix2pix(HD)代码在训练时会自动保存一个损失变化的txt文件,通过该文件能够对训练过程进行一个简单的可视化,代码如下。训练的损
深度学习 可视化 pix2pix 损失函数 自动保存 -
Pix2Pix 使用指南:从原理到项目应用
Pix2Pix 的性质是图像转换。图像转换,指从一副图像到另一副图像的转换。可以类比机器翻译,一种语言转换为另一
人工智能 计算机视觉 生成器 最小化 损失函数