只要能解决实际问题,用什么工具来学习数据挖掘都是无所谓,这里首推Python。那该如何利用Python来学习数据挖掘?需要掌握Python中的哪些知识?
1、Pandas库的操作
Panda是数据分析特别重要的一个库,我们要掌握以下三点:
· pandas 分组计算;
· pandas 索引与多重索引;
索引比较难,但是却是非常重要的
· pandas 多表操作与数据透视表
2、numpy数值计算
numpy数据计算主要应用是在数据挖掘,对于以后的机器学习,深度学习,这也是一个必须掌握的库,我们要掌握以下内容:
· Numpy array理解;
· 数组索引操作;
· 数组计算;
· Broadcasting(线性代数里面的知识)
3、数据可视化-matplotlib与seaborn
· Matplotib语法
python最基本的可视化工具就是matplotlib。咋一看Matplotlib与matlib有点像,要搞清楚二者的关系是什么,这样学习起来才会比较轻松。
· seaborn的使用
seaborn是一个非常漂亮的可视化工具。
· pandas绘图功能
前面说过pandas是做数据分析的,但它也提供了一些绘图的API。
4、数据挖掘入门
这部分是最难也是最有意思的一部分,要掌握以下几个部分:
· 机器学习的定义
在这里跟数据挖掘先不做区别
· 代价函数的定义
· Train/Test/Validate
· Overfitting的定义与避免方法
5、数据挖掘算法
数据挖掘发展到现在,算法已经非常多,下面只需掌握最简单的,最核心的,最常用的算法:
· 最小二乘算法;
· 梯度下降;
· 向量化;
· 极大似然估计;
· Logistic Regression;
· Decision Tree;
· RandomForesr;
· XGBoost;
6、数据挖掘实战
通过机器学习里面最着名的库scikit-learn来进行模型的理解。
以上,就是为大家理清的大数据挖掘学习思路逻辑。可是,这还仅仅是开始,在通往数据挖掘师与数据科学家路上,还要学习文本处理与自然语言知识、Linux与Spark的知识、深度学习知识等等,我们要保持持续的兴趣来学习数据挖掘。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,有兴趣的朋友,可以查阅多智时代,在此为你推荐几篇优质好文:
1.Python和R语言对比,数据分析与挖掘该选哪一个?
http://www.duozhishidai.com/article-21757-1.html 2.Python工程师与人工智能工程师之间,最根本的区别是什么?
http://www.duozhishidai.com/article-14635-1.html 3.为什么要学习Python,有哪些优缺点,应该如何上手?
http://www.duozhishidai.com/article-1784-1.html