数据库是一个非常大的话题,我们在很多地方,都会看到对数据库的性能分析会包括以下部分。
但其实呢,以上这些内容都是我们应该具备的基础知识,所以我今天要讲的就是,具备了这些基础知识之后我们应该干什么事情。
也就是说,从性能瓶颈判断分析的角度入手,才是性能从业人员该有的逻辑。每次我分析一个性能问题时,逻辑总是这样的:
1. 先画出整个系统的架构图。
2. 列出整个系统中用到了哪些组件。这一步要确定用哪些监控工具来收集数据,具体的内容你可以看下之前讲到的监控设计相关的内容。
3. 掌握每个组件的架构图。在这一步中需要列出它们的关键性能配置参数。
4. 在压力场景执行的过程中收集状态计数器。
5. 通过分析思路画出性能瓶颈的分析决策树。
6. 找到问题的根本原因。
7. 提出解决方案并评估每个方案的优缺点和成本。
这是分析决策树的创建逻辑。有了这些步骤之后,即使不熟悉一个系统,你也可以进行性能分析。
对于 MySQL 数据库来说,我们想对它进行分析,同样也需要看它的架构图。如下图所示(这是 MySQL5 版本的架构示意图):
这里就有一个问题了:看架构图是看什么?这个图够细吗?
首先,看架构图,一开始肯定是看大而全的架构。比如说上图,我们知道了,MySQL 中有 Connection Pool、SQL Interface、Parser 等这些大的模块。
其次,我们得知道这些模块的功能及运行逻辑。比如说,我们看到了这些模块之后,需要知道,当一个 SQL 通过 Connection Pool 进到系统之后,需要先进入 SQL Interface 模块判断这个语句,知道它是一个什么样的 SQL,涉及到了什么内容;然后通过 Parser 模块进行语法语义检查,并生成相应的执行计划;接着到 Optimizer 模块进行优化,判断走什么索引,执行顺序之类的;然后就到 Caches 中找数据,如果在 Caches 中找不到数据的话,就得通过文件系统到磁盘中找。
这就是一个大体的逻辑。但是知道了这个逻辑还不够。还记得前面我们说的对一个组件进行“全局—定向”的监控思路吧。
这里我们也得找工具实现对 MySQL 的监控,还好 MySQL 的监控工具非常多。
在讲 MySQL 的监控工具之前,我们先来了解下 MySQL 中的两个 Schema,分别是information_schema和performance_schema 。
为什么呢?
information_schema保存了数据库中的所有表、列、索引、权限、配置参数、状态参数等信息。像show processlist;就来自于这个 schema 中的 processlist 表。
performance_schema提供了数据库运行时的资源消耗情况,它以较低的代价收集信息,可以提供不少性能数据。
所以这两个 Schema 对我们来说就非常重要了。
你没事的时候,也可以查一下它们相关的各个表,一个个看着玩。监控工具中的很多数据来自于它们。
还有两个命令是你在分析 MySQL 时一定要学会的:SHOW GLOBAL VARIABLES;和SHOW GLOBAL status;。前一个用来查看配置的参数值,后一个用来查询状态值。当你没有其他工具可用的时候,就可以用这两个命令的输出结果来分析。对于全局监控来说,这两个命令绝对够用。
对于 MySQL 的监控工具有很多,但我主要讲的是以下几个工具:
mysqlreport、pt-query-digest、mysql_exportor+
Prometheus+Grafana。
今天我们先来说一下 mysqlreport。
全局分析:mysqlreport
这个工具执行之后会生成一个文本文件,在这个文本文件中包括了如下这些内容。
我觉得这个工具是属于既不浪费资源,又能全局监控 MySQL 的很好的工具。
在我们执行性能场景时,如果想让 mysqlreport 抓取到的数据更为准确,可以先重启一下数据库。如果你觉得重启数据库这个动作实在是有点大,可以先把状态计数器、打开表、查询缓存等数据给刷新一下。
我认为 mysqlreport 有一些重要的知识点需要知道,在这里找一个例子给大家解释一下。
索引报表
_ Key _________________________________________________________________
Buffer used 5.00k of 8.00M %Used: 0.06
Current 1.46M %Usage: 18.24
请注意,这里所指的 Key Buffer 是指 MyISAM 引擎使用的Shared Key Buffer,InnoDB 所使用的Key Buffer不在这里统计。
从上面的数据来看,MySQL 每次分配的Key Buffer最大是 5K,占 8M 的 0.06%,还是很小的。下一行中的数据可以看到的是当前只用了 1.46M,占 8M 的 18.24%。
显然这个 Key Buffer 是够用的,如果这个使用率高,你就得增加key_buffer_size的值了。
操作报表
__ Questions ___________________________________________________________
Total 126.82M 32.5/s
+Unknown 72.29M 18.5/s %Total: 57.00
Com_ 27.63M 7.1/s 21.79
DMS 26.81M 6.9/s 21.14
COM_QUIT 45.30k 0.0/s 0.04
QC Hits 38.18k 0.0/s 0.03
Slow 2 s 6.21M 1.6/s 4.90 %DMS: 23.17 Log:
DMS 26.81M 6.9/s 21.14
SELECT 20.73M 5.3/s 16.34 77.30
INSERT 3.68M 0.9/s 2.90 13.71
UPDATE 1.43M 0.4/s 1.13 5.33
DELETE 983.11k 0.3/s 0.78 3.67
REPLACE 0 0/s 0.00 0.00
Com_ 27.63M 7.1/s 21.79
admin_comma 11.86M 3.0/s 9.35
set_option 10.40M 2.7/s 8.20
commit 5.15M 1.3/s 4.06
从这个数据可以看到的信息量就有点大了,它可以反应出来这个数据库现在忙不忙。
从 32.5 每秒的操作量上来说,还是有点忙的。你还可以看到下面有操作数的细分,其实我不太愿意看下面的这些细分,描述上除了QC Hits和DMS的意思比较清晰之外,其他的几个值理解起来比较费劲。我也不建议你看下面那几个,因为它们对性能分析来说没起到什么正向的作用。
而 Slow 那这一行就很重要了,从这行可以看出slow log的时间是设置为 2 秒的,并且每秒还出现 1.6 个的慢日志,可见这个系统的 SQL 的慢日志实在是有点多。
DMS部分可以告诉我们这个数据库中各种 SQL 所占的比例。其实它是具有指向性的,像我们的这个例子中,显然是SELECT多,那如果要做 SQL 优化的话,肯定优先考虑SELECT的语句,才会起到立竿见影的效果。
查询和排序报表
__ SELECT and Sort _____________________________________________________
Scan 7.88M 2.0/s %SELECT: 38.04
Range 237.84k 0.1/s 1.15
Full join 5.97M 1.5/s 28.81
Range check 913.25k 0.2/s 4.41
Full rng join 18.47k 0.0/s 0.09
Sort scan 737.86k 0.2/s
Sort range 56.13k 0.0/s
Sort mrg pass 282.65k 0.1/s
这个报表具有着绝对的问题指向性。这里的Scan(全表扫描)和Full join(联合全表扫描)在场景执行过程中实在是太多了,这显然是 SQL 写得有问题。
Range 范围查询很正常,本来就应该多。
查询缓存报表
__ Query Cache _________________________________________________________
Memory usage 646.11k of 1.00M %Used: 63.10
Block Fragmnt 14.95%
Hits 38.18k 0.0/s
Inserts 1.53k 0.0/s
Insrt:Prune 2.25:1 0.0/s
Hit:Insert 24.94:1
在这部分中,我们看的关键点是,Query Cache没用!因为各种query都没有缓存下来。同时这里我们还要看一个关键值,那就是Block Fragment,它是表明Query Cache碎片的,值越高,则说明问题越大。
如果你看到下面这样的数据,就明显没有任何问题。
__ Query Cache ______________________________________________________
Memory usage 38.05M of 256.00M %Used: 14.86
Block Fragmnt 4.29%
Hits 12.74k 33.3/s
Inserts 58.21k 152.4/s
Insrt:Prune 58.21k:1 152.4/s
Hit:Insert 0.22:1
这个数据明显看到缓存了挺多的数据。Hits 这一行指的是每秒有多少个 SELECT 语句从Query Cache中取到了数据,这个值是越大越好。
而通过Insrt:Prune的比值数据,我们可以看到 Insert 远远大于 Prune(每秒删除的Query Cache碎片),这个比值越大就说明Query Cache越稳定。如果这个值接近 1:1 那才有问题,这个时候就要加大Query Cache或修改你的 SQL 了。
而通过下面的Hit:Insert的值,我们可以看出命中要少于插入数,说明插入的比查询的还要多,这时就要去看这个性能场景中是不是全是插入了。如果我们查看了,发现 SELECT 语句还是很多的,而这个比值又是 Hit 少,那么我们的场景中使用的数据应该并不是插入的数据。其实在性能场景的执行过程中经常这样。所以在性能分析的过程中,我们只要知道这个值就可以了,并不能说明Query Cache就是无效的了。
表信息报表
__ Table Locks _________________________________________________________
Waited 0 0/s %Total: 0.00
Immediate 996 0.0/s
__ Tables ______________________________________________________________
Open 2000 of 2000 %Cache: 100.00
Opened 15.99M 4.1/s
这个很明显了,表锁倒是不存在。但是你看现在table_open_cache已经达到上限了,设置为 2000,而现在已经达到了 2000,同时每秒打开表 4.1 个。
这些数据说明了什么呢?首先打开的表肯定是挺多的了,因为达到上限了嘛。这时候你会自然而然地想到去调table_open_cache参数。但是我建议你调之前先分析下其他的部分,如果在这个性能场景中,MySQL 的整体负载就会比较高,同时也并没有报错,那么不建议你调这个值。如果负载不高,那再去调它。
连接报表和临时表
__ Connections _________________________________________________________
Max used 521 of 2000 %Max: 26.05
Total 45.30k 0.0/s
__ Created Temp ________________________________________________________
Disk table 399.77k 0.1/s
Table 5.81M 1.5/s Size: 16.0M
File 2.13k 0.0/s
这个数据连接还完全够用,但是从临时表创建在磁盘(Disk table)和临时文件(File) 上的量级来说,还是有点偏大了,所以,可以增大tmp_table_size。
线程报表
__ Threads _____________________________________________________________
Running 45 of 79
Cached 9 of 28 %Hit: 72.35
Created 12.53k 0.0/s
Slow 0 0/s
__ Aborted _____________________________________________________________
Clients 0 0/s
Connects 7 0.0/s
__ Bytes _______________________________________________________________
Sent 143.98G 36.9k/s
Received 21.03G 5.4k/
当 Running 的线程数超过配置值时,就需要增加thread_cache_size。但是从这里来看,并没有超过,当前配置了 79,只用到了 45。而这里 Cached 的命中%Hit是越大越好,我们通常都希望在 99% 以上。
InnoDB 缓存池报表
__ InnoDB Buffer Pool __________________________________________________
Usage 1.87G of 4.00G %Used: 46.76
Read hit 100.00%
Pages
Free 139.55k %Total: 53.24
Data 122.16k 46.60 %Drty: 0.00
Misc 403 0.15
Latched 0.00
Reads 179.59G 46.0k/s
From file 21.11k 0.0/s 0.00
Ahead Rnd 0 0/s
Ahead Sql 0/s
Writes 54.00M 13.8/s
Flushes 3.16M 0.8/s
Wait Free 0 0/s
这个部分对 MySQL 来说是很重要的,innodb_buffer_pool_size为 4G,它会存储表数据、索引数据等。通常在网上或书籍里,你能看到有人建议将这个值设置为物理内存的 50%,当然这个值没有绝对的,还要在具体的应用场景中测试才能知道。
这里的Read hit达到 100%,这很好。
下面还有些其他的读写数据,这部分的数据将和我们在操作系统上看到的 I/O 有很大关系。有些时候,由于写入的过多,导致操作系统的I/O wait很高的时候,我们不得不设置innodb_flush_log_at_trx_commit参数(0:延迟写,实时刷;1:实时写,实时刷;2:实时写,延迟刷)和sync_binlog 参数(0:写入系统缓存,而不刷到磁盘;1:同步写入磁盘;N:写 N 次系统缓存后执行一次刷新操作)来降低写入磁盘的频率,但是这样做的风险就是当系统崩溃时会有数据的丢失。
这其实是我们做测试时,存储性能不高的时候常用的一种手段,为了让 TPS 更高一些。但是,你一定要知道生产环境中的存储是什么样的能力,以确定在生产环境中应该如何配置这个参数。
InnoDB 锁报表
__ InnoDB Lock _________________________________________________________
Waits 227829 0.1/s
Current 1
Time acquiring
Total 171855224 ms
Average 754 ms
Max 6143 ms
这个信息就有意思了。显然在这个例子中,锁的次数太多了,并且锁的时间都还不短,平均时间都能达到 754ms,这显然是不能接受的。
那就会有人问了,锁次数和锁的平均时间多少才是正常呢?在我的经验中,锁平均时间最好接近零。锁次数可以有,这个值是累加的,所以数据库启动时间长,用得多,锁次数就会增加。
InnoDB 其他信息
__ InnoDB Data, Pages, Rows ____________________________________________
Data
Reads 35.74k 0.0/s
Writes 6.35M 1.6/s
fsync 4.05M 1.0/s
Pending
Reads 0
Writes 0
fsync 0
Pages
Created 87.55k 0.0/s
Read 34.61k 0.0/s
Written 3.19M 0.8/s
Rows
Deleted 707.46k 0.2/s
Inserted 257.12M 65.9/s
Read 137.86G 35.3k/s
Updated 1.13M 0.3/
这里的数据可以明确告诉你的一点是,在这个性能场景中,插入占有着绝对的量级。
总结
在拿一个 mysqlreport 报表从上到下看了一遍之后,是不是觉得对 MySQL 有点感觉了?这里我给一个结论性的描述吧:
1.在这个性能场景中,慢日志太多了,需要定向监控看慢 SQL,找到慢 SQL 的执行计划。
2.在这个插入多的场景中,锁等待太多,并且等待的时候又太长,解决慢 SQL 之后,这里可能会解决,但还是要分析具体的原因的,所以这里也是指向了 SQL。
这里为什么要描述得这么细致呢?主要是因为当你看其他一些工具的监控数据时,分析思路是可以共用的。
但是有人说这里还有一个问题:SQL 怎么看?
其实对于我们分析的逻辑来说,在数据库中看 SQL 就是在做定向的分析了。请你不要相信一些人所吹嘘的那样,一开始就把所有的 SQL 执行时间统计出来,这真的是完全没有必要的做法。因为成本太高了。
思考题
MySQL 中全局监控工具可以给我们提供哪些信息?以及,如何判断 MySQL 状态值和配置值之间的关系呢?