文章目录

  • 前言
  • HQL操作之--DQL命令
  • 第 1 节 Metastore
  • 1.1 metastore三种配置方式
  • 第 2 节 HiveServer2
  • 第 3 节 HCatalog
  • 第 4 节 数据存储格式




前言

提示:本文章对于初学者准备,希望对大家有所帮助。如果有什么建议和疑问,请留言给我,我会不断完成完善。


HQL操作之–DQL命令

第 1 节 Metastore

Metadata即元数据。元数据包含用Hive创建的database、table、表的字段等元信息。元数据存储在关系型数据库中。如hive内置的Derby、第三方如MySQL等。

Metastore即元数据服务,是Hive用来管理库表元数据的一个服务。有了它上层的服务不用再跟裸的文件数据打交道,而是可以基于结构化的库表信息构建计算框架。

通过metastore服务将Hive的元数据暴露出去,而不是需要通过对Hive元数据库mysql的访问才能拿到Hive的元数据信息;metastore服务实际上就是一种thrift服
务,通过它用户可以获取到Hive元数据,并且通过thrift获取元数据的方式,屏蔽了数据库访问需要驱动,url,用户名,密码等细节。

1.1 metastore三种配置方式

1、内嵌模式
内嵌模式使用的是内嵌的Derby数据库来存储元数据,也不需要额外起Metastore服务。数据库和Metastore服务都嵌入在主Hive Server进程中。这个是默认的,配置简单,但是一次只能一个客户端连接,适用于用来实验,不适用于生产环境。

优点:配置简单,解压hive安装包 bin/hive 启动即可使用;

缺点:不同路径启动hive,每一个hive拥有一套自己的元数据,无法共享。

2、本地模式
本地模式采用外部数据库来存储元数据,目前支持的数据库有:MySQL、Postgres、Oracle、MS SQL Server。教学中实际采用的是MySQL。本地模式不需要单独起metastore服务,用的是跟Hive在同一个进程里的metastore服务。也就是说当启动一个hive 服务时,其内部会启动一个metastore服务。Hive根据 hive.metastore.uris 参数值来判断,如果为空,则为本地模式。

缺点:每启动一次hive服务,都内置启动了一个metastore;在hive-site.xml中暴露的数据库的连接信息;

优点:配置较简单,本地模式下hive的配置中指定mysql的相关信息即可。

3. 远程模式

远程模式下,需要单独起metastore服务,然后每个客户端都在配置文件里配置连接到该metastore服务。远程模式的metastore服务和hive运行在不同的进程里。在生产环境中,建议用远程模式来配置Hive Metastore。

在这种模式下,其他依赖hive的软件都可以通过Metastore访问Hive。此时需要配hive.metastore.uris 参数来指定 metastore 服务运行的机器ip和端口,并且需要单独手动启动metastore服务。metastore服务可以配置多个节点上,避免单节点故障导致整个集群的hive client不可用。同时hive client配置多metastore地址,会自动选择可用节点。

metastore内嵌模式配置

1、下载软件解压缩
2、设置环境变量,并使之生效
3、初始化数据库。
schematool -dbType derby -initSchema
4、进入hive命令行
5、再打开一个hive命令行,发现无法进入

metastore远程模式配置

配置规划

hive msck 元数据修复 hive元数据存储管理_hive


配置步骤

  1. 将 linux123 的 hive 安装文件拷贝到 linux121、linux122
  2. 在linux121、linux123上分别启动 metastore 服务
# 启动 metastore 服务
nohup hive --service metastore &
# 查询9083端口(metastore服务占用的端口)
lsof -i:9083
# 安装lsof
yum install lsof
  1. 修改 linux122 上hive-site.xml。删除配置文件中:MySQL的配置、连接数据库的用户名、口令等信息;增加连接metastore的配置:
1<!-- hive metastore 服务地址 -->
<property>
	<name>hive.metastore.uris</name>
	<value>thrift://linux121:9083,thrift://linux123:9083</value>
</property>
  1. 启动hive。此时client端无需实例化hive的metastore,启动速度会加快。
分别在linux121、linux121上执行以下命令,查看连接情况
lsof -i:9083
  1. 高可用测试。关闭已连接的metastore服务,发现hive连到另一个节点的服务上,仍然能够正常使用。

第 2 节 HiveServer2

HiveServer2是一个服务端接口,使远程客户端可以执行对Hive的查询并返回结果。目前基于Thrift RPC的实现是HiveServer的改进版本,并支持多客户端并发和身份验证,启动hiveServer2服务后,就可以使用jdbc、odbc、thrift 的方式连接。

Thrift是一种接口描述语言和二进制通讯协议,它被用来定义和创建跨语言的服务。它被当作一个远程过程调用(RPC)框架来使用,是由Facebook为“大规模跨语言服务开发”而开发的。

HiveServer2(HS2)是一种允许客户端对Hive执行查询的服务。HiveServer2是HiveServer1的后续 版本。HS2支持多客户端并发和身份验证,旨在为JDBC、ODBC等开放API客户端提供更好的支持。

HS2包括基于Thrift的Hive服务(TCP或HTTP)和用于Web UI 的Jetty Web服务器。

1select * from emp
where sal > 2000;

HiveServer2作用
为Hive提供了一种允许客户端远程访问的服务基于thrift协议,支持跨平台,跨编程语言对Hive访问允许远程访问Hive

HiveServer2配置

配置规划

hive msck 元数据修复 hive元数据存储管理_sql_02


配置步骤

1、修改集群上的 core-site.xml,增加以下内容:

<!-- HiveServer2 连不上10000;hadoop为安装用户 -->
<!-- root用户可以代理所有主机上的所有用户 -->
    <property>  
        <name>hadoop.proxyuser.root.hosts</name>  
        <value>*</value>
    </property>
    <property>  
        <name>hadoop.proxyuser.root.groups</name>  
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.hadoop.hosts</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.hadoop.groups</name>
        <value>*</value>
    </property>

2、修改 集群上的 hdfs-site.xml,增加以下内容:

<!-- HiveServer2 连不上10000;启用 webhdfs 服务 -->
    <property> 
        <name>dfs.webhdfs.enabled</name> 
        <value>true</value> 
    </property>

3、启动linux123上的 HiveServer2 服务

# 启动 hiveserver2 服务
nohup hiveserver2 &

# 检查 hiveserver2 端口
lsof -i:10000

# 从2.0开始,HiveServer2提供了WebUI
# 还可以使用浏览器检查hiveserver2的启动情况。http://linux123:10002/

4、启动 linux122 节点上的 beeline
Beeline是从 Hive 0.11版本引入的,是 Hive 新的命令行客户端工具。
Hive客户端工具后续将使用Beeline 替代 Hive 命令行工具 ,并且后续版本也会废弃掉 Hive 客户端工具。

!connect jdbc:hive2://linux123:10000
use mydb;
show tables;
select * from emp;
create table tabtest1 (c1 int, c2 string);
!connect jdbc:mysql://linux123:3306
!help
!quit

第 3 节 HCatalog

HCatalog 提供了一个统一的元数据服务,允许不同的工具如 Pig、MapReduce 等通过 HCatalog 直接访问存储在 HDFS 上的底层文件。HCatalog是用来访问Metastore的Hive子项目,它的存在给了整个Hadoop生态环境一个统一的定义。

HCatalog 使用了 Hive 的元数据存储,这样就使得像 MapReduce 这样的第三方应用可以直接从 Hive 的数据仓库中读写数据。同时,HCatalog 还支持用户在
MapReduce 程序中只读取需要的表分区和字段,而不需要读取整个表,即提供一种逻辑上的视图来读取数据,而不仅仅是从物理文件的维度。

HCatalog 提供了一个称为 hcat 的命令行工具。这个工具和 Hive 的命令行工具类似,两者最大的不同就是 hcat 只接受不会产生 MapReduce 任务的命令。

# 进入 hcat 所在目录。$HIVE_HOME/hcatalog/bin
cd $HIVE_HOME/hcatalog/bin

# 执行命令,创建表
./hcat -e "create table default.test1(id string, name string,
age int)"

# 长命令可写入文件,使用 -f 选项执行
./hcat -f createtable.txt

# 查看元数据
./hcat -e "use mydb; show tables"

# 查看表结构
./hcat -e "desc mydb.emp"

# 删除表
./hcat -e "drop table default.test1"

第 4 节 数据存储格式

Hive支持的存储数的格式主要有:TEXTFILE(默认格式) 、SEQUENCEFILE、RCFILE、ORCFILE、PARQUET。

  • textfile为默认格式,建表时没有指定文件格式,则使用TEXTFILE,导入数据时会直接把数据文件拷贝到hdfs上不进行处理;
  • sequencefile,rcfile,orcfile格式的表不能直接从本地文件导入数据,数据要先导入到textfile格式的表中,然后再从表中用insert导入sequencefile、rcfile、orcfile表中。

行存储与列存储
行式存储下一张表的数据都是放在一起的,但列式存储下数据被分开保存了。
行式存储
优点:数据被保存在一起,insert和update更加容易

缺点:选择(selection)时即使只涉及某几列,所有数据也都会被读取

列式存储
优点:查询时只有涉及到的列会被读取,效率高

缺点:选中的列要重新组装,insert/update比较麻烦

TEXTFILE、SEQUENCEFILE 的存储格式是基于行存储的;
ORC和PARQUET 是基于列式存储的。