简介
理论上一个Redis可以达到10w的并发,但实际上却远达不到,那么我们如何处理高并发呢?此时我们可以使用多个redis来提高redis的并发处理能力,这些redis如何协同,就需要有一定的架构设计,这里我们首先从主从(Master/Slave)架构进行分析和实现.
这篇我来简单说一下三个内容:主从复制、哨兵机制、Redis集群
一、主从复制
架构图:
其中,master负责读写,并将数据同步到salve,从节点负责读操作.
主从实践
1.启动三台redis
docker run -p 6379:6379 --name redis6379 \
-v /usr/local/docker/redis01/data:/data \
-v /usr/local/docker/redis01/conf/redis.conf:/etc/redis/redis.conf \
-d redis redis-server /etc/redis/redis.conf \
--appendonly yes
更换名字以及端口号即可
2.登录查询角色
127.0.0.1:6379> info replication
\# Replication
role:master
connected_slaves:0
master_repl_offset:3860
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:2
repl_backlog_histlen:3859
这里我们看到三台Redis的role都为master
找到redis6379的ip地址准备设置为Master
docker inspect redis6379
……
"Networks": {
"bridge": {
"IPAMConfig": null,
"Links": null,
"Aliases": null,
"NetworkID": "c33071765cb48acb1efed6611615c767b04b98e6e298caa0dc845420e6112b73",
"EndpointID": "4c77e3f458ea64b7fc45062c5b2b3481fa32005153b7afc211117d0f7603e154",
"Gateway": "172.17.0.1",
"IPAddress": "172.17.0.2",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"MacAddress": "02:42:ac:11:00:02",
"DriverOpts": null
}
}
这里注意172.17.0.2才是它的ip地址
3.设置Master/Slave架构
分别登录两台要设置为Slave的Reids执行语句
slaveof 172.17.0.2 6379
这句话的意思就是把6379设置为Master,其他两个设置为Slave
4.测试
[root@centos7964 ~]# docker exec -it redis6379 redis-cli
127.0.0.1:6379> set role master6379
OK
127.0.0.1:6379> get role
"master6379"
127.0.0.1:6379>[root@centos7964 ~]# docker exec -it redis6380 redis-cli
127.0.0.1:6379> get role
"master6379"
127.0.0.1:6379> set role slave6380
(error) READONLY You can't write against a read only replica.
127.0.0.1:6379>
这里可以看到6379读写都可以,而6380只能读不能写
主从原理
全量同步和增量同步。
全量同步:
Redis全量复制一般发生在Slave初始化阶段,这时Slave需要将Master上的所有数据都复制一份。具体步骤如下:
1)从服务器连接主服务器,发送SYNC命令;
2)主服务器接收到SYNC命名后,开始执行BGSAVE命令生成RDB文件并使用缓冲区记录此后执行的所有写命令;
3)主服务器BGSAVE执行完后,向所有从服务器发送快照文件,并在发送期间继续记录被执行的写命令;
4)从服务器收到快照文件后丢弃所有旧数据,载入收到的快照;
5)主服务器快照发送完毕后开始向从服务器发送缓冲区中的写命令;
6)从服务器完成对快照的载入,开始接收命令请求,并执行来自主服务器缓冲区的写命令;
增量同步:
Redis增量复制是指Slave初始化后,开始正常工作时主服务器发生的写操作同步到从服务器的过程。 增量复制的过程主要是主服务器每执行一个写命令就会向从服务器发送相同的写命令,从服务器接收并执行收到的写命令。
为什么用主从
对缓存而言,一般都是用来支撑读高并发的,写的请求是比较少的,可能写请求也就一秒钟几千。读的请求相对就会比较多,例如,一秒钟二十万次读。所以redis的高并发可以基于主从架构与读写分离机制进行实现。
Redis的replication(复制)机制
- redis采用异步方式复制数据到slave节点。
- 一个master node是可以配置多个slave node的。
- slave node也可以连接其他的slave node。
- slave node做复制的时候,是不会block master node的正常工作的。
- slave node在做复制的时候,也不会block对自己的查询操作,它会用旧的数据集来提供服务; 但是复制完成的时候,需要删除旧数据集,加载新数据集,这个时候就会暂停对外服务了。
- slave node主要用来进行横向扩容,做读写分离,扩容的slave node可以提高读的吞吐量。
二、哨兵机制
哨兵(Sentinel)是Redis的主从架构模式下,实现高可用性(high availability)的一种机制。
由一个或多个Sentinel实例(instance)组成的Sentinel系统(system)可以监视任意多个主服务器,以及这些主服务器属下的所有从服务器,并在被监视的主服务器进入下线状态时,自动将下线主服务器属下的某个从服务器升级为新的主服务器,然后由新的主服务器代替已下线的主服务器继续处理命令请求。
架构图
哨兵实践
1.配置文件
进入三台redis容器配置,创建sentinel.conf文件
sentinel monitor redis6379 172.17.0.2 6379 1
其中, 如上指令表示要的监控的master, redis6379为服务名, 172.17.0.2和6379为master的ip和端口,1表示多少个sentinel认为一个master失效时,master才算真正失效.
2.启动哨兵服务
在刚才创建文件的目录下执行命令
redis-sentinel sentinel.conf
3.关闭mster服务
检测日志
410:X 11 Jul 2021 09:54:27.383 # +switch-master redis6379 172.17.0.2 6379 172.17.0.4 6379
410:X 11 Jul 2021 09:54:27.383 * +slave slave 172.17.0.3:6379 172.17.0.3 6379 @ redis6379 172.17.0.4 6379
410:X 11 Jul 2021 09:54:27.383 * +slave slave 172.17.0.2:6379 172.17.0.2 6379 @ redis6379 172.17.0.4 6379
4.登录172.17.0.4 6379查看信息
127.0.0.1:6379> info replication
\# Replication
role:master
connected_slaves:1
slave0:ip=172.17.0.3,port=6379,state=online,offset=222807,lag=0
master_failover_state:no-failover
master_replid:3d63e8474dd7bcb282ff38027d4a78c413cede53
master_replid2:5baf174fd40e97663998abf5d8e89a51f7458488
master_repl_offset:222807
second_repl_offset:110197
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:29
repl_backlog_histlen:222779
127.0.0.1:6379>
这时我们发现它的role变成了master
哨兵配置进阶
将刚才创建的sentinel文件加入语句用于增强哨兵机制
daemonize yes #后台运行
logfile "/var/log/sentinel_log.log" #运行日志
sentinel down-after-milliseconds redis6379 30000 #默认30秒
哨兵工作原理
- 每个Sentinel以每秒钟一次的频率向它所知的Master,Slave以及其他 Sentinel 实例发送一个 PING 命令。
- 如果一个实例(instance)距离最后一次有效回复 PING 命令的时间超过 down-after-milliseconds 选项所指定的值(这个配置项指定了需要多少失效时间,一个master才会被这个sentinel主观地认为是不可用的。 单位是毫秒,默认为30秒), 则这个实例会被 Sentinel 标记为主观下线。
- 如果一个Master被标记为主观下线,则正在监视这个Master的所有 Sentinel 要以每秒一次的频率确认Master的确进入了主观下线状态。
- 当有足够数量的 Sentinel(大于等于配置文件指定的值)在指定的时间范围内确认Master的确进入了主观下线状态, 则Master会被标记为客观下线 。
- 在一般情况下, 每个 Sentinel 会以每 10 秒一次的频率向它已知的所有Master,Slave发送 INFO 命令 。
- 当Master被 Sentinel 标记为客观下线时,Sentinel 向下线的 Master 的所有 Slave 发送 INFO 命令的频率会从 10 秒一次改为每秒一次 。
- 若没有足够数量的 Sentinel 同意 Master 已经下线, Master 的客观下线状态就会被移除。
- 若 Master 重新向 Sentinel 的 PING 命令返回有效回复, Master 的主观下线状态就会被移除。
三、Redis集群
Redis单机模式可靠性保证不是很好,容易出现单点故障,同时其性能也受限于CPU的处理能力,实际开发中Redis必然是高可用的,所以单机模式并不是我们的终点,我们需要对目前redis的架构模式进行升级。
Sentinel模式做到了高可用,但是实质还是只有一个master在提供服务(读写分离的情况本质也是master在提供服务),当master节点所在的机器内存不足以支撑系统的数据时,就需要考虑集群了。
Redis集群架构实现了对redis的水平扩容,即启动N个redis节点,将整个数据分布存储在这N个redis节点中,每个节点存储总数据的1/N。redis集群通过分区提供一定程度的可用性,即使集群中有一部分节点失效或无法进行通讯,集群也可以继续处理命令请求。
架构图
对于redis集群(Cluster),一般最少设置为6个节点,3个master,3个slave。需要注意的是:必须要3个或以上
的主节点,否则在创建集群时会失败,并且当存活的主节点数小于总节点数的一半时,整个集群就无法提供服务了。
集群实践
1.创建网络环境
docker network create redis-net
查看网卡信息
docker network ls 查看全部
docker network inspect redis-net 详细查看某个网络
2.配置redis模板信息
在redis下里创建cluster.tmpl文件并输入模板信息
port ${PORT} 节点端口,即对外提供通信的端口
cluster-enabled yes 是否启用集群
cluster-config-file nodes.conf 集群配置文件
cluster-node-timeout 5000 连接超时时间
cluster-announce-ip 192.168.126.129 宿主机ip
cluster-announce-port ${PORT} 集群节点映射端口
cluster-announce-bus-port 1${PORT} 集群总线端口
appendonly yes 持久化模式
3.shell创建节点配置文件
在redis-cluser中执行以下命令
for port in $(seq 8010 8015); \
do \
mkdir -p ./${port}/conf \
&& PORT=${port} envsubst < ./redis-cluster.tmpl > ./${port}/conf/redis.conf \
&& mkdir -p ./${port}/data; \
done
4.创建集群中redis的节点容器
for port in $(seq 8010 8015); \
do \
docker run -it -d -p ${port}:${port} -p 1${port}:1${port} \
--privileged=true -v /usr/local/docker/redis-cluster/${port}/conf/redis.conf:/usr/local/etc/redis/redis.conf \
--privileged=true -v /usr/local/docker/redis-cluster/${port}/data:/data \
--restart always --name redis-${port} --net redis-net \
--sysctl net.core.somaxconn=1024 redis redis-server /usr/local/etc/redis/redis.conf; \
done
5.创建redis-cluster集群配置
docker exec -it redis-8010 bash
redis-cli --cluster create 192.168.126.129:8010 192.168.126.129:8011 192.168.126.129:8012 192.168.126.129:8013 192.168.126.129:8014 192.168.126.129:8015 --cluster-replicas 1
注意这里的ip地址与端口号的填写
查看集群信息:
cluster nodes #查看集群节点数
cluster info #查看集群基本信息
6.连接redisjiqun
redis-cli -c -h 192.168.126.129 -p 8010
7.测试
测试成功,数据存到了8012端口的15495槽位
再次修改,没有显示对应的端口与槽位,这是因为已经有key了,在原来的基础上做修改即可
Redis槽位分配
在redis官方给出的集群方案中,数据的分配是按照槽位来进行分配的,每一个数据的键被哈希函数映射到一个槽位,redis-3.0.0规定一共有16384个槽位,当然这个可以根据用户的喜好进行配置。当用户put或者是get一个数据的时候,首先会查找这个数据对应的槽位是多少,然后查找对应的节点,然后才把数据放入这个节点。这样就做到了把数据均匀的分配到集群中的每一个节点上,从而做到了每一个节点的负载均衡,充分发挥了集群的威力。
为什么RedisCluster会设计成16384个槽呢?
1.如果槽位为65536,发送心跳信息的消息头达8k,发送的心跳包过于庞大。
如上所述,在消息头中,最占空间的是 myslots[CLUSTER_SLOTS/8]
。 当槽位为65536时,这块的大小是: 65536÷8÷1024=8kb
因为每秒钟,redis节点需要发送一定数量的ping消息作为心跳包,如果槽位为65536,这个ping消息的消息头太大了,浪费带宽。
2.redis的集群主节点数量基本不可能超过1000个。
如上所述,集群节点越多,心跳包的消息体内携带的数据越多。如果节点过1000个,也会导致网络拥堵。因此redis作者,不建议redis cluster节点数量超过1000个。 那么,对于节点数在1000以内的redis cluster集群,16384个槽位够用了。没有必要拓展到65536个。
3.槽位越小,节点少的情况下,压缩率高
Redis主节点的配置信息中,它所负责的哈希槽是通过一张bitmap的形式来保存的,在传输过程中,会对bitmap进行压缩,但是如果bitmap的填充率slots / N很高的话(N表示节点数),bitmap的压缩率就很低。 如果节点数很少,而哈希槽数量很多的话,bitmap的压缩率就很低。
而16384÷8÷1024=2kb,怎么样,神奇不!