pytorch常用函数总结
torch.max(input,dim)
求取指定维度上的最大值,,返回输入张量给定维度上每行的最大值,并同时返回每个最大值的位置索引。比如:
demo.shape
Out[7]: torch.Size([10, 3, 10, 10])
torch.max(demo,1)[0].shape
Out[8]: torch.Size([10, 10, 10])
torch.max(demo,1)[0]这其中的[0]取得就是返回的最大值,torch.max(demo,1)[1]就是返回的最大值对应的位置索引。例子如下:
a
Out[8]:
tensor([[1., 2., 3.],
[4., 5., 6.]])
a.max(1)
Out[9]:
torch.return_types.max(
values=tensor([3., 6.]),
indices=tensor([2, 2]))
class torch.nn.ParameterList(parameters=None)
将submodules保存在一个list中。
ParameterList可以像一般的Python list一样被索引。而且ParameterList中包含的parameters已经被正确的注册,对所有的module method可见。
参数说明:
modules (list, optional) – a list of nn.Parameter
例子:
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.params = nn.ParameterList([nn.Parameter(torch.randn(10, 10)) for i in range(10)])
def forward(self, x):
# ModuleList can act as an iterable, or be indexed using ints
for i, p in enumerate(self.params):
x = self.params[i // 2].mm(x) + p.mm(x)
return x
torch.cat()函数
cat是concatnate的意思:拼接,联系在一起。
先说cat( )的普通用法
如果我们有两个tensor是A和B,想把他们拼接在一起,需要如下操作:
C = torch.cat( (A,B),0 ) #按维数0拼接(竖着拼)
C = torch.cat( (A,B),1 ) #按维数1拼接(横着拼)
相当于将tensor按照指定维度进行拼接,比如A的shape为128*64*32*32,B的shape为 128*32*64*64,那么按照 torch.cat( (A,B),1)拼接的之后的形状为 128*96*64*64。
注意:
两个tensor要想进行拼接,必须保证除了指定拼接的维度以外其他的维度形状必须相同,比如上面的例子,拼接A和B时,A的形状为128*64*32*32,B的形状为128*32*64*64,只有第二个维度的维数数值不同,其他的维度的维数都是相同的,所以拼接时可按维度1进行拼接(注意,维度的下标是从0开始的,比如 A 的形状对应的维度下标为:\(128_0*64_1*32_2*32_3\))
contiguous()函数的使用
contiguous一般与transpose,permute,view搭配使用:使用transpose或permute进行维度变换后,调用contiguous,然后方可使用view对维度进行变形(如:tensor_var.contiguous().view() ),示例如下:
x = torch.Tensor(2,3)
y = x.permute(1,0) # permute:二维tensor的维度变换,此处功能相当于转置transpose
y.view(-1) # 报错,view使用前需调用contiguous()函数
y = x.permute(1,0).contiguous()
y.view(-1) # OK
具体原因有两种说法:
1 transpose、permute等维度变换操作后,tensor在内存中不再是连续存储的,而view操作要求tensor的内存连续存储,所以需要contiguous来返回一个contiguous copy;
2 维度变换后的变量是之前变量的浅拷贝,指向同一区域,即view操作会连带原来的变量一同变形,这是不合法的,所以也会报错;---- 这个解释有部分道理,也即contiguous返回了tensor的深拷贝contiguous copy数据;
tensor.repeat()函数
该函数传入的参数个数不少于tensor的维数,其中每个参数代表的是对该维度重复多少次,也就相当于复制的倍数,结合例子更好理解,如下:
>>> import torch
>>>
>>> a = torch.randn(33, 55)
>>> a.size()
torch.Size([33, 55])
>>>
>>> a.repeat(1, 1).size()
torch.Size([33, 55])
>>>
>>> a.repeat(2,1).size()
torch.Size([66, 55])
>>>
>>> a.repeat(1,2).size()
torch.Size([33, 110])
>>>
>>> a.repeat(1,1,1).size()
torch.Size([1, 33, 55])
>>>
>>> a.repeat(2,1,1).size()
torch.Size([2, 33, 55])
>>>
>>> a.repeat(1,2,1).size()
torch.Size([1, 66, 55])
>>>
>>> a.repeat(1,1,2).size()
torch.Size([1, 33, 110])
>>>
>>> a.repeat(1,1,1,1).size()
torch.Size([1, 1, 33, 55])
>>>
>>> # repeat()的参数的个数,不能少于被操作的张量的维度的个数,
>>> # 下面是一些错误示例
>>> a.repeat(2).size() # 1D < 2D, error
Traceback (most recent call last):
File "", line 1, in
RuntimeError: Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor
>>>
>>> b = torch.randn(5,6,7)
>>> b.size() # 3D
torch.Size([5, 6, 7])
>>>
>>> b.repeat(2).size() # 1D < 3D, error
Traceback (most recent call last):
File "", line 1, in
RuntimeError: Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor
>>>
>>> b.repeat(2,1).size() # 2D < 3D, error
Traceback (most recent call last):
File "", line 1, in
RuntimeError: Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor
>>>
>>> b.repeat(2,1,1).size() # 3D = 3D, okay
torch.Size([10, 6, 7])
>>>
torch.masked_select()函数
a = torch.Tensor([[4,5,7], [3,9,8],[2,3,4]])
b = torch.Tensor([[1,1,0], [0,0,1],[1,0,1]]).type(torch.ByteTensor)
c = torch.masked_select(a,b)
print(c)
用法:torch.masked_select(x, mask),mask必须转化成torch.ByteTensor类型。
torch.sort
torch.sort(input, dim=None, descending=False, out=None) -> (Tensor, LongTensor)
对输入张量input沿着指定维按升序排序。如果不给定dim,则默认为输入的最后一维。如果指定参数descending为True,则按降序排序
返回元组 (sorted_tensor, sorted_indices) , sorted_indices 为原始输入中的下标。
参数:
input (Tensor) – 要对比的张量
dim (int, optional) – 沿着此维排序
descending (bool, optional) – 布尔值,控制升降排序
out (tuple, optional) – 输出张量。必须为ByteTensor或者与第一个参数tensor相同类型。
例子:
>>> x = torch.randn(3, 4)
>>> sorted, indices = torch.sort(x)
>>> sorted
-1.6747 0.0610 0.1190 1.4137
-1.4782 0.7159 1.0341 1.3678
-0.3324 -0.0782 0.3518 0.4763
[torch.FloatTensor of size 3x4]
>>> indices
0 1 3 2
2 1 0 3
3 1 0 2
[torch.LongTensor of size 3x4]
>>> sorted, indices = torch.sort(x, 0)
>>> sorted
-1.6747 -0.0782 -1.4782 -0.3324
0.3518 0.0610 0.4763 0.1190
1.0341 0.7159 1.4137 1.3678
[torch.FloatTensor of size 3x4]
>>> indices
0 2 1 2
2 0 2 0
1 1 0 1
[torch.LongTensor of size 3x4]
pytorch 输入表达式就可以自动求导 怎么做到的
转载本文章为转载内容,我们尊重原作者对文章享有的著作权。如有内容错误或侵权问题,欢迎原作者联系我们进行内容更正或删除文章。
下一篇:同一个交换机不同VLAN
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章
-
cron表达式详细讲解
cron表达式简介
cron表达式 -
一行代码就可以通过 LeetCode?来看下我是怎么做到的!
飞机座位分配概率 这是一道 LeetCode 为数不多的概率题,我们来看下。
python 递归 栈溢出 动态规划 尾递归 -
绘图就可以创建机器学习模型!human-learn做到了!
如今,数据科学家经常给带有标签的机器学习模型数据,以便它可以找出规则。 这些规则可用于预测新数据的标签。这很方便,但是在此过程中可
机器学习 python 深度学习 人工智能 数据分析 -
只要十步,你就可以应用表达式树来优化动态调用
表达式树是 .net 中一系列非常好用的类型。在一些场景中使用表达式树可以获得更好的性能和更佳的扩展性。本篇我们将通过构建一个 “模型验证器” 来理解和应用表达式树在构建动态调用方面的优...
.net framework github gitee entityframework minion -
JAVA 表达式类型的自动提升 java λ表达式
• 面向对象思想: 做一件事情,找一个能解决这个事情的对象,调用对象的方法,完成事情。• 函数式编程思想: 只要能获取到结果,谁去做的,怎么做的都不重要,重视的是结果,不是过程。
JAVA 表达式类型的自动提升 java 抽象方法 System ide -
Linux系统安装远程todesk
先说一下本人的实现环境: 控制端:Ubuntu 11.04 被控制端:CentOS 5.
Linux系统安装远程todesk linux 服务器 桌面环境 ssh