本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记
1.anchor_target_layer(rpn_cls_score, gt_boxes, gt_ishard, dontcare_areas, im_info, _feat_stride = [16,], anchor_scales = [4 ,8, 16, 32])代码逻辑
调用(generate_anchors.py中)generate_anchors(...)产生9个base anchors--->
im_info = im_info[0] # 取出第一张图像更新im_info?,存储该图像的宽、高和缩放因子,blobs['im_info']是什么内容?多少张图像???与imdb.roidb相关???--->
计算shifts偏移量,即在conv5_3 feature map各个位置相对于(0,0)位置(在scaled图像上)的距离,如[0,16,0,16],为什么不用2列表示,要用4列表示偏移?--->
在conv5_3 feature map各个位置利用shifts和9个base anchors产生total_anchors个anchors,计算anchors需对base anchors和shifts进行reshape,此处要用到Python的broadcast机制--->
剔除越界的anchors,而不是限制在图像边界(RPN训练时,与原文描述一致),inds_inside为对应anchors的索引,更新anchors = all_anchors[inds_inside, :]--->
产生anchors的labels(0表示负样本、1表示正样本、-1表示dontcare):首先以-1填充labels,调用bbox_overlaps(...)(utils/cython_bbox.so,由C编译)计算anchors与gt_boxes的overlaps,对于各anchor,若其与gt_boxes max IOU<0.3,则label置为0,将与各gt产生max IOU的anchor的label置为1,将各anchor与gt max IOU超过0.7的anchor的label置为1;调用bbox_intersections(...)(utils/cython_bbox.so,由C编译)计算dontcare_areas与anchors的交集,对于各anchor,若其与dontcare_areas交集和超过0.5,将其label置为-1;调用bbox_overlaps(...)(utils/cython_bbox.so,由C编译)计算gt_hardboxes与anchors的overlaps,对于各anchor,若其与gt_hardboxes max IOU超过0.1,将其label置为-1,此外,对于各gt_hardboxes,将与其有max IOU的anchor对应label置为-1--->
对正、负样本RPN进行采样,各取128个,若正样本不足128个,以负样本补足,其余anchors的label置为-1--->
调用_compute_targets(...)函数计算各anchors的回归目标值bbox_targets--->
创建bbox_inside_weights和bbox_outside_weights,对于正样本anchor,其值为[1, 1, 1, 1],其余anchor对应均为[0, 0, 0, 0],未知实际使用意义--->
调用_unmap(...)函数将data(labels、bbox_targets、bbox_inside_weights、bbox_outside_weights)的shape由(inds_inside,None)扩充为(total_anchors,None),扩充位置数据填入无效值--->
# total_anchors为在conv5_3 feature map上产生的所有anchors(含超出图像边界的anchors)的数量
# inds_inside为剔除越界anchors后的anchors索引
labels = _unmap(labels, total_anchors, inds_inside, fill=-1)
bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)
bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0)
bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0)
将labels、bbox_targets、bbox_inside_weights、bbox_outside_weights reshape成(1, height, width, A)或(1, height, width, A*4)并返回(即rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights)
# blobs['im_info']是什么内容?多少张图像???与imdb.roidb相关???
# 传入anchor_scales = [8, 16, 32]
# 为anchors产生标签(-1,0,1)rpn_labels、回归目标值rpn_bbox_targets以及
# rpn_bbox_inside_weights(各anchor的权重系数)、平衡bg/fg anchors的rpn_bbox_outside_weights
def anchor_target_layer(rpn_cls_score, gt_boxes, gt_ishard, dontcare_areas, im_info, _feat_stride = [16,], anchor_scales = [4 ,8, 16, 32]):
"""
Assign anchors to ground-truth targets. Produces anchor classification labels and bounding-box regression targets.
Parameters
----------
rpn_cls_score: (1, H, W, Ax2) bg/fg scores of previous conv layer
gt_boxes: (G, 5) vstack of [x1, y1, x2, y2, class]
gt_ishard: (G, 1), 1 or 0 indicates difficult or not
dontcare_areas: (D, 4), some areas may contains small objs but no labelling. D may be 0
im_info: a list of [image_height, image_width, scale_ratios]
_feat_stride: the downsampling ratio of feature map to the original input image
anchor_scales: the scales to the basic_anchor (basic anchor is [16, 16])
----------
Returns
----------
rpn_labels : (HxWxA, 1), for each anchor, 0 denotes bg, 1 fg, -1 dontcare
rpn_bbox_targets: (HxWxA, 4), distances of the anchors to the gt_boxes(may contains some transform)
that are the regression objectives
rpn_bbox_inside_weights: (HxWxA, 4) weights of each boxes, mainly accepts hyper param in cfg
rpn_bbox_outside_weights: (HxWxA, 4) used to balance the fg/bg, beacuse the numbers of bgs and fgs mays significiantly different
"""
# 在conv5_3 feature map(0,0)位置上产生9个base anchors
_anchors = generate_anchors(scales=np.array(anchor_scales))
_num_anchors = _anchors.shape[0]
if DEBUG:
print 'anchors:'
print _anchors
print 'anchor shapes:'
print np.hstack((
_anchors[:, 2::4] - _anchors[:, 0::4],
_anchors[:, 3::4] - _anchors[:, 1::4],
))
_counts = cfg.EPS
_sums = np.zeros((1, 4))
_squared_sums = np.zeros((1, 4))
_fg_sum = 0
_bg_sum = 0
_count = 0
# allow boxes to sit over the edge by a small amount
_allowed_border = 0
# map of shape (..., H, W)
#height, width = rpn_cls_score.shape[1:3]
# 取出第一张图像相关信息???
im_info = im_info[0]
# Algorithm:
#
# for each (H, W) location i
# generate 9 anchor boxes centered on cell i
# apply predicted bbox deltas at cell i to each of the 9 anchors
# filter out-of-image anchors !!!!!!RPN训练阶段剔除越界anchor
# measure GT overlap
assert rpn_cls_score.shape[0] == 1, \
'Only single item batches are supported'
# map of shape (..., H, W)
# conv5_3 feature map高和宽
height, width = rpn_cls_score.shape[1:3]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
print ''
print 'im_size: ({}, {})'.format(im_info[0], im_info[1])
print 'scale: {}'.format(im_info[2])
print 'height, width: ({}, {})'.format(height, width)
print 'rpn: gt_boxes.shape', gt_boxes.shape
print 'rpn: gt_boxes', gt_boxes
# 产生conv5 feature map各个位置相对于(0,0)位置(在scaled图像上)的偏移量,如[0,16,0,16]
# 1. Generate proposals from bbox deltas and shifted anchors
shift_x = np.arange(0, width) * _feat_stride
shift_y = np.arange(0, height) * _feat_stride
shift_x, shift_y = np.meshgrid(shift_x, shift_y) # in W H order
# K is H x W
shifts = np.vstack((shift_x.ravel(), shift_y.ravel(),
shift_x.ravel(), shift_y.ravel())).transpose()
# add A anchors (1, A, 4) to
# cell K shifts (K, 1, 4) to get
# shift anchors (K, A, 4)
# reshape to (K*A, 4) shifted anchors
A = _num_anchors
K = shifts.shape[0]
# 在conv5_3 feature map各个位置上产生所有anchors
all_anchors = (_anchors.reshape((1, A, 4)) +
shifts.reshape((1, K, 4)).transpose((1, 0, 2)))
all_anchors = all_anchors.reshape((K * A, 4))
# 产生的anchors数量
total_anchors = int(K * A)
# 训练RPN阶段:剔除越界的anchors
# only keep anchors inside the image
inds_inside = np.where(
(all_anchors[:, 0] >= -_allowed_border) &
(all_anchors[:, 1] >= -_allowed_border) &
(all_anchors[:, 2] < im_info[1] + _allowed_border) & # width
(all_anchors[:, 3] < im_info[0] + _allowed_border) # height
)[0]
if DEBUG:
print 'total_anchors', total_anchors
print 'inds_inside', len(inds_inside)
# keep only inside anchors
anchors = all_anchors[inds_inside, :]
if DEBUG:
print 'anchors.shape', anchors.shape
# label: 1 is positive, 0 is negative, -1 is dont care
# 为anchors创建labels
labels = np.empty((len(inds_inside), ), dtype=np.float32)
labels.fill(-1)
# overlaps between the anchors and the gt boxes
# overlaps (ex, gt), shape is A x G
# gt_boxes: (G, 5) vstack of [x1, y1, x2, y2, class]
# bbox_overlaps(...)由C编译 overlaps.shape = (anchors.shape[0],gt_boxes[0])
overlaps = bbox_overlaps(
np.ascontiguousarray(anchors, dtype=np.float),
np.ascontiguousarray(gt_boxes, dtype=np.float))
argmax_overlaps = overlaps.argmax(axis=1) # A 这里原代码注释的A是指anchor的数量,而不是9!
# 取出各anchor与gt max IOU值
max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]
gt_argmax_overlaps = overlaps.argmax(axis=0) # G
# 取出各gt与anchor max IOU值
gt_max_overlaps = overlaps[gt_argmax_overlaps,
np.arange(overlaps.shape[1])]
# 取出各gt与anchor得到max IOU值对应的anchor索引,该数组内元素可能重复
gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0]
# 为各个anchor分配label
# 该值表明:If an anchor statisfied by positive and negative conditions set to negative
# 默认TRAIN.RPN_CLOBBER_POSITIVES = False
if not cfg.TRAIN.RPN_CLOBBER_POSITIVES:
# assign bg labels first so that positive labels can clobber重写 them
# 默认TRAIN.RPN_NEGATIVE_OVERLAP = 0.3
labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0
# fg label: for each gt, anchor with highest overlap
labels[gt_argmax_overlaps] = 1
# fg label: above threshold IOU
# 默认TRAIN.RPN_POSITIVE_OVERLAP = 0.7
labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1
# 该值表明:If an anchor statisfied by positive and negative conditions set to negative
# 默认TRAIN.RPN_CLOBBER_POSITIVES = False
if cfg.TRAIN.RPN_CLOBBER_POSITIVES:
# assign bg labels last so that negative labels can clobber positives
labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0
# preclude排除 dontcare areas
if dontcare_areas is not None and dontcare_areas.shape[0] > 0:
# intersec shape is D x A
intersecs = bbox_intersections(
np.ascontiguousarray(dontcare_areas, dtype=np.float), # D x 4
np.ascontiguousarray(anchors, dtype=np.float) # A x 4 这里原代码注释的A是指anchor的数量,而不是9!
)
# 各anchor与所有dontcare_areas交集之和
intersecs_ = intersecs.sum(axis=0) # A x 1
# TRAIN.DONTCARE_AREA_INTERSECTION_HI = 0.5 与dontcare box交集之和阈值
# label为-1表明该anchor为dontcare anchor
labels[intersecs_ > cfg.TRAIN.DONTCARE_AREA_INTERSECTION_HI] = -1
# preclude排除 hard samples that are highly occlusioned, truncated or difficult to see
# 默认TRAIN.PRECLUDE_HARD_SAMPLES = True
if cfg.TRAIN.PRECLUDE_HARD_SAMPLES and gt_ishard is not None and gt_ishard.shape[0] > 0:
# 1 or 0 indicates difficult or not
assert gt_ishard.shape[0] == gt_boxes.shape[0]
gt_ishard = gt_ishard.astype(int)
gt_hardboxes = gt_boxes[gt_ishard == 1, :]
if gt_hardboxes.shape[0] > 0:
# H x A
hard_overlaps = bbox_overlaps(
np.ascontiguousarray(gt_hardboxes, dtype=np.float), # H x 4 H指gt_hardboxes的数量
np.ascontiguousarray(anchors, dtype=np.float)) # A x 4 这里的A是指anchor的数量,而不是9!
# 各anchor与gt_hardboxes max IOU值
hard_max_overlaps = hard_overlaps.max(axis=0) # (A)
# TRAIN.RPN_POSITIVE_OVERLAP = 0.7
labels[hard_max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = -1
# 各gt_hardboxes与anchor得到max IOU对应的anchor索引
max_intersec_label_inds = hard_overlaps.argmax(axis=1) # H x 1
labels[max_intersec_label_inds] = -1
# 默认正(label为1)、负(lable为0)样本1:1采样,由TRAIN.RPN_FG_FRACTION控制
# 若正样本anchor不足128个,则以负样本填充???
# subsample positive labels if we have too many
# 默认TRAIN.RPN_FG_FRACTION = 0.5、TRAIN.RPN_BATCHSIZE = 256
num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE)
fg_inds = np.where(labels == 1)[0]
if len(fg_inds) > num_fg:
disable_inds = npr.choice(
fg_inds, size=(len(fg_inds) - num_fg), replace=False)
labels[disable_inds] = -1
# subsample negative labels if we have too many
num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1)
bg_inds = np.where(labels == 0)[0]
if len(bg_inds) > num_bg:
disable_inds = npr.choice(
bg_inds, size=(len(bg_inds) - num_bg), replace=False)
labels[disable_inds] = -1
#print "was %s inds, disabling %s, now %s inds" % (
#len(bg_inds), len(disable_inds), np.sum(labels == 0))
# inds_inside为anchors数量,即上面提到的A
bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32)
# argmax_overlaps为各anchor与gt得到max IOU对应的gt索引
bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])
# bbox_inside_weights和bbox_outside_weights的实际意义???
bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
# 默认TRAIN.RPN_BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0)
# 仅正样本有bbox_inside_weights和bbox_outside_weights权重系数,其余全0
bbox_inside_weights[labels == 1, :] = np.array(cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS)
bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
# 默认TRAIN.RPN_POSITIVE_WEIGHT = -1.0
if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0:
# uniform weighting of examples (given non-uniform sampling)
num_examples = np.sum(labels >= 0) + 1
# positive_weights = np.ones((1, 4)) * 1.0 / num_examples
# negative_weights = np.ones((1, 4)) * 1.0 / num_examples
positive_weights = np.ones((1, 4))
negative_weights = np.zeros((1, 4))
else:
assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &
(cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1))
positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT /
(np.sum(labels == 1)) + 1)
negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) /
(np.sum(labels == 0)) + 1)
# 默认正样本anchor的bbox_outside_weights为[1, 1, 1, 1] 负样本anchor的bbox_outside_weights为[0, 0, 0, 0]
bbox_outside_weights[labels == 1, :] = positive_weights
bbox_outside_weights[labels == 0, :] = negative_weights
if DEBUG:
_sums += bbox_targets[labels == 1, :].sum(axis=0)
_squared_sums += (bbox_targets[labels == 1, :] ** 2).sum(axis=0)
_counts += np.sum(labels == 1)
means = _sums / _counts
stds = np.sqrt(_squared_sums / _counts - means ** 2)
print 'means:'
print means
print 'stdevs:'
print stds
# map up to original set of anchors
# total_anchors为在conv5_3 feature map上产生的所有anchors(含超出图像边界的anchors)的数量
# inds_inside为剔除越界anchors后的anchors索引
labels = _unmap(labels, total_anchors, inds_inside, fill=-1)
bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)
bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0)
bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0)
if DEBUG:
print 'rpn: max max_overlap', np.max(max_overlaps)
print 'rpn: num_positive', np.sum(labels == 1)
print 'rpn: num_negative', np.sum(labels == 0)
_fg_sum += np.sum(labels == 1)
_bg_sum += np.sum(labels == 0)
_count += 1
print 'rpn: num_positive avg', _fg_sum / _count
print 'rpn: num_negative avg', _bg_sum / _count
# labels
#pdb.set_trace()
# 对labels、bbox_targets、bbox_inside_weights、bbox_outside_weights进行reshape成(1, height, width, A或A*4)并返回
# labels(即rpn_labels)、bbox_targets(rpn_bbox_targets)、bbox_inside_weights(即rpn_bbox_inside_weights)、bbox_outside_weights(即rpn_bbox_outside_weights)
# 这里的A=9 不同于上面的A!!!
labels = labels.reshape((1, height, width, A))
rpn_labels = labels
# bbox_targets
bbox_targets = bbox_targets \
.reshape((1, height, width, A * 4))
rpn_bbox_targets = bbox_targets
# bbox_inside_weights
bbox_inside_weights = bbox_inside_weights \
.reshape((1, height, width, A * 4))
#assert bbox_inside_weights.shape[2] == height
#assert bbox_inside_weights.shape[3] == width
rpn_bbox_inside_weights = bbox_inside_weights
# bbox_outside_weights
bbox_outside_weights = bbox_outside_weights \
.reshape((1, height, width, A * 4))
#assert bbox_outside_weights.shape[2] == height
#assert bbox_outside_weights.shape[3] == width
rpn_bbox_outside_weights = bbox_outside_weights
return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights
# -*- coding:utf-8 -*-
# Author: WUJiang
# 测试功能
# gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0]
import numpy as np
a = np.array([
[5, 2, 3, 4],
[2, 7, 1, 6],
[9, 1, 2, 5],
[3, 1, 4, 7]
])
b = np.array([2, 2, 2, 7])
# 前面是第1维的坐标,后面是第2维的坐标
# (array([0, 1, 2, 3], dtype=int64), array([1, 0, 2, 3], dtype=int64))
print(np.where(a == b))
# [0 1 2 3]
print(np.where(a == b)[0])
# -*- coding:utf-8 -*-
# Author: WUJiang
# 测试功能
import numpy as np
count = 5
data = np.array([
[1, 2, 3, 4],
[2, 6, 8, 0]
])
c = (count, ) + data.shape[1:]
# (5,4)
print(c)
2._unmap(data, count, inds, fill=0)
将data(如labels、bbox_targets、bbox_inside_weights、bbox_outside_weights)的shape由(inds_inside,None)扩充为(total_anchors,None),扩充位置数据填入无效值,被anchor_target_layer(...)函数调用
# 将data的shape由(inds_inside,None)扩充为(total_anchors,None),扩充位置数据填入无效值
# inds_inside(即inds)表示剔除越界anchors的索引、total_anchors(即count)为在conv5_3 feature map上产生的anchors的数量
def _unmap(data, count, inds, fill=0):
""" Unmap a subset of item (data) back to the original set of items (of size count) """
if len(data.shape) == 1:
ret = np.empty((count, ), dtype=np.float32)
ret.fill(fill)
ret[inds] = data
else:
ret = np.empty((count, ) + data.shape[1:], dtype=np.float32)
ret.fill(fill)
ret[inds, :] = data
return ret
3._compute_targets(ex_rois,gt_rois)
根据传入的anchors和gt boxes[:,:4]计算anchors回归目标值,被anchor_target_layer(...)调用
# 根据anchors和gt boxes[:,:4]计算anchors回归目标值
def _compute_targets(ex_rois, gt_rois):
"""Compute bounding-box regression targets for an image."""
assert ex_rois.shape[0] == gt_rois.shape[0]
assert ex_rois.shape[1] == 4
assert gt_rois.shape[1] == 5
return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)