张量常规解释

张量(tensor)理论是数学的一个分支学科,在力学中有重要应用。张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具。张量之所以重要,在于它可以满足一切物理定律必须与坐标系的选择无关的特性。张量概念是矢量概念的推广,矢量是一阶张量。张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数。 

Tensorflow中张量的概念

在tensorflow程序中所有的数据都通过张量的形式来表示。

从功能的角度看,张量可以被理解为多维数组。其中零阶张量表示标量(scalar)也就是一个数;一阶张量为向量,也就是一维数组;n阶张量可以理解为一个n维数组。

但张量的实现并不是直接采用数组的形式,它只是对TensorFlow中运算结果的引用。在张量中并没有保存数字,它保存的是如何得到这些数字的计算过程。

张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.

t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素. 


数学实例

Python 例子

0

纯量 (只有大小)

s = 483

1

向量(大小和方向)

v = [1.1, 2.2, 3.3]

2

矩阵(数据表)

m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

3

3阶张量 (数据立体)

t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]

n

n阶 (自己想想看)

....