pytorch官网文档Conv2d — PyTorch 1.13 documentation

一.深度卷积神经网络(AlexNet)

1.1 AlexNet

2012年,AlexNet横空出世。它首次证明了学习到的特征可以超越手工设计的特征。它一举打破了计算机视觉研究的现状。 AlexNet使用了8层卷积神经网络,并以很大的优势赢得了2012年ImageNet图像识别挑战赛。

提供了一个稍微精简版本的AlexNet

孪生卷积神经网络 卷积神经网络最新_人工智能

 首先,AlexNet比相对较小的LeNet5要深得多。 AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。 其次,AlexNet使用ReLU而不是sigmoid作为其激活函数。

1.2 模型设计

在AlexNet的第一层,卷积窗口的形状是11×11。由于ImageNet中大多数图像的宽和高比MNIST图像的多10倍以上,因此,需要一个更大的卷积窗口来捕获目标。 第二层中的卷积窗口形状被缩减为5×5,然后是3×3。 此外,在第一层、第二层和第五层卷积层之后,加入窗口形状为3×3、步幅为2的最大汇聚层。 而且,AlexNet的卷积通道数目是LeNet的10倍。 

在最后一个卷积层后有两个全连接层,分别有4096个输出。 这两个巨大的全连接层拥有将近1GB的模型参数。

1.3 激活函数

AlexNet将sigmoid激活函数改为更简单的ReLU激活函数。 一方面,ReLU激活函数的计算更简单,它不需要如sigmoid激活函数那般复杂的求幂运算。 另一方面,当使用不同的参数初始化方法时,ReLU激活函数使训练模型更加容易。 当sigmoid激活函数的输出非常接近于0或1时,这些区域的梯度几乎为0,因此反向传播无法继续更新一些模型参数。 相反,ReLU激活函数在正区间的梯度总是1。 因此,如果模型参数没有正确初始化,sigmoid函数可能在正区间内得到几乎为0的梯度,从而使模型无法得到有效的训练。

容量控制和预处理

AlexNet通过暂退法,控制全连接层的模型复杂度,而LeNet只使用了权重衰减。 为了进一步扩充数据,AlexNet在训练时增加了大量的图像增强数据,如翻转、裁切和变色。 这使得模型更健壮,更大的样本量有效地减少了过拟合。

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    # 这里,我们使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10))

torch.nn.Conv2d(in_channelsout_channelskernel_sizestride=1padding=0dilation=1groups=1bias=Truepadding_mode='zeros'device=Nonedtype=None)

孪生卷积神经网络 卷积神经网络最新_孪生卷积神经网络_02

二维卷积应该是最常用的卷积方式了,在Pytorch的nn模块中,封装了nn.Conv2d()类作为二维卷积的实现。使用方法和普通的类一样,先实例化再使用。卷积层最重要的可学习参数——权重参数和偏置参数去哪了?在Tensorflow中都是先定义好weight和bias,再去定义卷积层的呀!在Pytorch的nn模块中,它是不需要你手动定义网络层的权重和偏置的,这也是体现Pytorch使用简便的地方。

Pytorch还提供了nn.Functional函数式编程的方法其中的F.conv2d()就和Tensorflow一样要先定义好卷积核的权重和偏置,作为F.conv2d()的形参之一。

in_channels
  这个很好理解,就是输入的四维张量[N, C, H, W]中的C了,即输入张量的channels数。这个形参是确定权重等可学习参数的shape所必需的。

out_channels
  也很好理解,即期望的四维输出张量的channels数,不再多说。

kernel_size
  卷积核的大小,一般我们会使用5x5、3x3这种左右两个数相同的卷积核,因此这种情况只需要写kernel_size = 5这样的就行了。如果左右两个数不同,比如3x5的卷积核,那么写作kernel_size = (3, 5),注意需要写一个tuple,而不能写一个列表(list)。

stride = 1
  卷积核在图像窗口上每次平移的间隔,即所谓的步长。这个概念和Tensorflow等其他框架没什么区别,不再多言。

padding = 0
  Pytorch与Tensorflow在卷积层实现上最大的差别就在于padding上。
  Padding即所谓的图像填充,后面的int型常数代表填充的多少(行数、列数),默认为0。需要注意的是这里的填充包括图像的上下左右,以padding = 1为例,若原始图像大小为32x32,那么padding后的图像大小就变成了34x34,而不是33x33。
  Pytorch不同于Tensorflow的地方在于,Tensorflow提供的是padding的模式,比如same、valid,且不同模式对应了不同的输出图像尺寸计算公式。而Pytorch则需要手动输入padding的数量,当然,Pytorch这种实现好处就在于输出图像尺寸计算公式是唯一的,即

孪生卷积神经网络 卷积神经网络最新_卷积_03

 

dilation = 1
  这个参数决定了是否采用空洞卷积,默认为1(不采用)。从中文上来讲,这个参数的意义从卷积核上的一个参数到另一个参数需要走过的距离,那当然默认是1了,毕竟不可能两个不同的参数占同一个地方吧(为0)。
  更形象和直观的图示可以观察Github上的Dilated convolution animations,展示了dilation=2的情况。

groups = 1
  决定了是否采用分组卷积,groups参数可以参考groups参数详解

bias = True
  即是否要添加偏置参数作为可学习参数的一个,默认为True。padding_mode = ‘zeros’
  即padding的模式,默认采用零填充。

---------------------------------------------------------------

torch.nn.MaxPool2d(kernel_sizestride=Nonepadding=0dilation=1return_indices=Falseceil_mode=False)

孪生卷积神经网络 卷积神经网络最新_孪生卷积神经网络_04