非线性变换–Sigmoid
对于任何函数,仅进行线性变换,最后都会统一为y = W * x + b
的形式,
这就导致线性变换的层数再多,也无法提高模型的效果,
对于此问题,要使用非线性变换函数,例如Sigmoid函数,
反向传播采用的求导方法–链式求导法则
对于 H = f · g
,可以利用复合函数上每一步的偏导数进行累积,最后求出整体导数
反向传播算法的过程
其过程总结为,“正向传播”求损失函数,“反向传播”计算梯度,利用梯度寻求损失函数最小,为模型更新合适的权重,
- 通过前向传播计算出结果,计算预测结果的损失函数的值
- 通过链式求导法则,向前逐层计算某层输入权重参数对误差的影响,其表示为计算损失函数的值对其的偏导(此处编程可根据pytorch张量自动计算梯度)
- 以此为根据,考虑步长,更新权重的值
- 不断重新计算,更新权重,直到对误差满意
本案例使用的误差函数,
案例
输入值:x1, x2 = 0.5,0.3
输出值:y1, y2 =0.23, -0.07
激活函数:sigmoid
损失函数:MSE(均方误差)
初始权值:0.2 -0.4 0.5 0.6 0.1 -0.5 -0.3 0.8(w1~w8)
本案例用下面的代码进行反向传播和正向传播,更新权值,
import numpy as np
def sigmoid(z):
a = 1 / (1 + np.exp(-z))
return a
def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):
in_h1 = w1 * x1 + w3 * x2
out_h1 = sigmoid(in_h1)
in_h2 = w2 * x1 + w4 * x2
out_h2 = sigmoid(in_h2)
in_o1 = w5 * out_h1 + w7 * out_h2
out_o1 = sigmoid(in_o1)
in_o2 = w6 * out_h1 + w8 * out_h2
out_o2 = sigmoid(in_o2)
print("正向计算:o1 ,o2")
print(round(out_o1, 5), round(out_o2, 5))
error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2
print("损失函数:均方误差")
print(round(error, 5))
return out_o1, out_o2, out_h1, out_h2
# # 错误代码,未正确推导公式
# def back_propagate(out_o1, out_o2, out_h1, out_h2):
# # 反向传播
# d_o1 = out_o1 - y1
# d_o2 = out_o2 - y2
# # print(round(d_o1, 2), round(d_o2, 2))
#
# d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
# d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
# # print(round(d_w5, 2), round(d_w7, 2))
# d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
# d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2
# # print(round(d_w6, 2), round(d_w8, 2))
#
# d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1
# d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2
# # print(round(d_w1, 2), round(d_w3, 2))
#
# d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1
# d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2
# # print(round(d_w2, 2), round(d_w4, 2))
# print("反向传播:误差传给每个权值")
# print(round(d_w1, 5), round(d_w2, 5), round(d_w3, 5), round(d_w4, 5), round(d_w5, 5), round(d_w6, 5),
# round(d_w7, 5), round(d_w8, 5))
#
# return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8
# 正确函数
def back_propagate(out_o1, out_o2, out_h1, out_h2):
# 反向传播
d_o1 = out_o1 - y1
d_o2 = out_o2 - y2
d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2
d_w1 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x1
d_w3 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x2
d_w2 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x1
d_w4 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x2
print("w的梯度:",round(d_w1, 2), round(d_w2, 2), round(d_w3, 2), round(d_w4, 2), round(d_w5, 2), round(d_w6, 2),
round(d_w7, 2), round(d_w8, 2))
return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8
def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
# 步长
step = 5
w1 = w1 - step * d_w1
w2 = w2 - step * d_w2
w3 = w3 - step * d_w3
w4 = w4 - step * d_w4
w5 = w5 - step * d_w5
w6 = w6 - step * d_w6
w7 = w7 - step * d_w7
w8 = w8 - step * d_w8
return w1, w2, w3, w4, w5, w6, w7, w8
if __name__ == "__main__":
w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8
x1, x2 = 0.5, 0.3
y1, y2 = 0.23, -0.07
print("=====输入值:x1, x2;真实输出值:y1, y2=====")
print(x1, x2, y1, y2)
print("=====更新前的权值=====")
print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
round(w8, 2))
for i in range(1000):
print("=====第" + str(i) + "轮=====")
out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)
print("更新后的权值")
print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
round(w8, 2))
修改前,此处错误
【注意:此处未修改前的程序运行结果,该结果仅说明Loss的递减趋势】
从逐次运行结果可以看出,损失函数(均方误差)的数值在一次递减。
5.10修改后
修正后的代码的运行结果,
第1000轮