1.基于UUID
优点:
- 生成足够简单,本地生成无网络消耗,具有唯一性
缺点:
- 无序的字符串,不具备趋势自增特性
- 没有具体的业务含义
长度过长16 字节128位,36位长度的字符串,存储以及查询对MySQL的性能消耗较大,MySQL官方明确建议主键要尽量越短越好,作为数据库主键 UUID 的无序性会导致数据位置频繁变动,严重影响性能。
2.基于数据库自增ID
基于数据库的auto_increment自增ID完全可以充当分布式ID,具体实现:需要一个单独的MySQL实例用来生成ID,建表结构如下:
CREATE DATABASE `SEQ_ID`;
CREATE TABLE SEQID.SEQUENCE_ID (
id bigint(20) unsigned NOT NULL auto_increment,
value char(10) NOT NULL default '',
PRIMARY KEY (id),
) ENGINE=MyISAM;
insert into SEQUENCE_ID(value) VALUES ('values');
当我们需要一个ID的时候,向表中插入一条记录返回主键ID,但这种方式有一个比较致命的缺点,访问量激增时MySQL本身就是系统的瓶颈,用它来实现分布式服务风险比较大,不推荐!
- 优点:
实现简单,ID单调自增,数值类型查询速度快
- 缺点:
DB单点存在宕机风险,无法扛住高并发场景
3.基于数据库集群模式
前边说了单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。
那这样还会有个问题,两个MySQL实例的自增ID都从1开始,会生成重复的ID怎么办?
解决方案: 设置起始值和自增步长
MySQL_1 配置:
set @@auto_increment_offset = 1; -- 起始值
set @@auto_increment_increment = 2; -- 步长
MySQL_2 配置:
set @@auto_increment_offset = 2; -- 起始值
set @@auto_increment_increment = 2; -- 步长
这样两个MySQL实例的自增ID分别就是:
1、3、5、7、9
2、4、6、8、10
那如果集群后的性能还是扛不住高并发咋办?就要进行MySQL扩容增加节点,这是一个比较麻烦的事。增加第三台MySQL实例需要人工修改一、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在一、二两台MySQL实例ID还没有增长到第三台MySQL实例的起始ID值的时候,否则自增ID就要出现重复了,必要时可能还需要停机修改。
- 优点:
解决DB单点问题
- 缺点:
不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。
4.基于数据库的号段模式
号段模式是当下分布式ID生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构如下:
CREATE TABLE id_generator (
id int(10) NOT NULL,
max_id bigint(20) NOT NULL COMMENT '当前最大id',
step int(20) NOT NULL COMMENT '号段的步长',
biz_type int(20) NOT NULL COMMENT '业务类型',
version int(20) NOT NULL COMMENT '版本号',
PRIMARY KEY (`id`)
)
biz_type :代表不同业务类型
max_id :当前最大的可用id
step :代表号段的长度
version :是一个乐观锁,每次都更新version,保证并发时数据的正确性
等这批号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。
update id_generator set max_id = #{max_id+step}, version = version + 1 where version = # {version} and biz_type = XXX
由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新,这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。
5.基于Redis模式
Redis也同样可以实现,原理就是利用redis的 incr命令实现ID的原子性自增。
127.0.0.1:6379> set seq_id 1 // 初始化自增ID为1
OK
127.0.0.1:6379> incr seq_id // 增加1,并返回递增后的数值
(integer) 2
用redis实现需要注意一点,要考虑到redis持久化的问题。redis有两种持久化方式RDB和AOF
- RDB会定时打一个快照进行持久化,假如连续自增但redis没及时持久化,而这会Redis挂掉了,重启Redis后会出现ID重复的情况。
- AOF会对每条写命令进行持久化,即使Redis挂掉了也不会出现ID重复的情况,但由于incr命令的特殊性,会导致Redis重启恢复的数据时间过长。
6.基于雪花算法(Snowflake)模式
雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。
Snowflake生成的是Long类型的ID,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特。
Snowflake ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 数据中心(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。
- 第一个bit位(1bit):Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。
- 时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的ID从更小的值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年
- 工作机器id(10bit):也被叫做workId,这个可以灵活配置,机房或者机器号组合都可以。
- 序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成4096个ID
根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。
Java版本的Snowflake算法实现:
// ==============================Fields===========================================
/** 工作机器ID(0~31) */
private long workerId;
/** 数据中心ID(0~31) */
private long datacenterId;
/** 毫秒内序列(0~4095) */
private long sequence = 0L;
/** 上次生成ID的时间截 */
private long lastTimestamp = -1L;
/** 开始时间截 (2020-01-01) */
private final long twepoch = 1577808000000L;
/** 机器id所占的位数 (0-31)*/
private final long workerIdBits = 5L;
/** 数据标识id所占的位数 (0-31)*/
private final long datacenterIdBits = 5L;
/** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
/** 支持的最大数据标识id,结果是31 */
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
/** 序列在id中占的位数 */
private final long sequenceBits = 12L;
/** 机器ID向左移12位 */
private final long workerIdShift = sequenceBits;
/** 数据标识id向左移17位(12+5) */
private final long datacenterIdShift = sequenceBits + workerIdBits;
/** 时间截向左移22位(5+5+12) */
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
/** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
private final long sequenceMask = -1L ^ (-1L << sequenceBits);
//==============================Constructors=====================================
/**
* 构造函数
* @param workerId 工作ID (0~31)
* @param datacenterId 数据中心ID (0~31)
*/
public SnowflakeIdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
// ==============================Methods==========================================
/**
* 获得下一个ID (该方法是线程安全的)
* @return SnowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen();
//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
//如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
//毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
//时间戳改变,毫秒内序列重置
else {
sequence = 0L;
}
//上次生成ID的时间截
lastTimestamp = timestamp;
//移位并通过或运算拼到一起组成64位的ID
return ((timestamp - twepoch) << timestampLeftShift) // timestamp - 开始时间截 << 时间截向左移22位(5+5+12) | 数据中心ID(0~31) << 数据标识id向左移17位(12+5)
| (datacenterId << datacenterIdShift) //
| (workerId << workerIdShift) //
| sequence;
}
/**
* 阻塞到下一个毫秒,直到获得新的时间戳
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
/**
* 返回以毫秒为单位的当前时间
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
}
7.百度(uid-generator)
uid-generator是由百度技术部开发,项目GitHub地址 https://github.com/baidu/uid-generator
uid-generator是基于Snowflake算法实现的,与原始的snowflake算法不同在于,uid-generator支持自定义时间戳、工作机器ID和 序列号 等各部分的位数,而且uid-generator中采用用户自定义workId的生成策略。
uid-generator需要与数据库配合使用,需要新增一个WORKER_NODE表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增ID就是该机器的workId数据由host,port组成。
对于uid-generator ID组成结构:
workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,而且同一应用每次重启就会消费一个workId。
8.美团(Leaf)
Leaf由美团开发,github地址:https://github.com/Meituan-Dianping/Leaf
Leaf同时支持号段模式和snowflake算法模式,可以切换使用。
号段模式
先导入源码 https://github.com/Meituan-Dianping/Leaf ,在建一张表leaf_alloc
DROP TABLE IF EXISTS `leaf_alloc`;
CREATE TABLE `leaf_alloc` (
`biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',
`max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',
`step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',
`description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',
PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB;
然后在项目中开启号段模式,配置对应的数据库信息,并关闭snowflake模式
leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://localhost:3306/leaf_test?useUnicode=true&characterEncoding=utf8&characterSetResults=utf8
leaf.jdbc.username=root
leaf.jdbc.password=root
leaf.snowflake.enable=false
#leaf.snowflake.zk.address=
#leaf.snowflake.port=
启动leaf-server 模块的 LeafServerApplication项目就跑起来了
号段模式获取分布式自增ID的测试url :http://localhost:8080/api/segment/get/leaf-segment-test
监控号段模式:http://localhost:8080/cache
snowflake模式
Leaf的snowflake模式依赖于ZooKeeper,不同于原始snowflake算法也主要是在workId的生成上,Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。
leaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181
snowflake模式获取分布式自增ID的测试url:http://localhost:8080/api/snowflake/get/test
9.滴滴(Tinyid)
Tinyid由滴滴开发,Github地址:https://github.com/didi/tinyid。
Tinyid是基于号段模式原理实现的与Leaf如出一辙,每个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]
Tinyid提供http和tinyid-client两种方式接入
Http方式接入
(1)导入Tinyid源码:
git clone https://github.com/didi/tinyid.git
(2)创建数据表:
CREATE TABLE `tiny_id_info` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
`biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '业务类型,唯一',
`begin_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同',
`max_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '当前最大id',
`step` int(11) DEFAULT '0' COMMENT '步长',
`delta` int(11) NOT NULL DEFAULT '1' COMMENT '每次id增量',
`remainder` int(11) NOT NULL DEFAULT '0' COMMENT '余数',
`create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
`update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
`version` bigint(20) NOT NULL DEFAULT '0' COMMENT '版本号',
PRIMARY KEY (`id`),
UNIQUE KEY `uniq_biz_type` (`biz_type`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'id信息表';
CREATE TABLE `tiny_id_token` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增id',
`token` varchar(255) NOT NULL DEFAULT '' COMMENT 'token',
`biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识',
`remark` varchar(255) NOT NULL DEFAULT '' COMMENT '备注',
`create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
`update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'token信息表';
INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
(1, 'test', 1, 1, 100000, 1, 0, '2018-07-21 23:52:58', '2018-07-22 23:19:27', 1);
INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
(2, 'test_odd', 1, 1, 100000, 2, 1, '2018-07-21 23:52:58', '2018-07-23 00:39:24', 3);
INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
(1, '0f673adf80504e2eaa552f5d791b644c', 'test', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');
INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
(2, '0f673adf80504e2eaa552f5d791b644c', 'test_odd', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');
(3)配置数据库:
datasource.tinyid.names=primary
datasource.tinyid.primary.driver-class-name=com.mysql.jdbc.Driver
datasource.tinyid.primary.url=jdbc:mysql://ip:port/databaseName?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8
datasource.tinyid.primary.username=root
datasource.tinyid.primary.password=xxxxxxxxx
(4)启动tinyid-server后测试
Java客户端方式接入
重复Http方式的(2)(3)操作
引入依赖
<dependency>
<groupId>com.xiaoju.uemc.tinyid</groupId>
<artifactId>tinyid-client</artifactId>
<version>${tinyid.version}</version>
</dependency>
配置文件
tinyid.server =localhost:9999
tinyid.token =0f673adf80504e2eaa552f5d791b644c
test 、tinyid.token是在数据库表中预先插入的数据,test 是具体业务类型,tinyid.token表示可访问的业务类型
// 获取单个分布式自增ID
Long id = TinyId . nextId( " test " );
// 按需批量分布式自增ID
List< Long > ids = TinyId . nextId( " test " , 10 );