参数与超参数

参数:可以使用最小二乘法或者梯度下降法等最优化算法优化出来的数我们称为参数;例如:岭回归中的参数深度学习超参数优化算法 什么是超参数调优_交叉验证.模型参数是模型内部的配置变量,其值可以根据数据进行估计。

  • 进行预测时需要参数。
  • 它参数定义了可使用的模型。
  • 参数是从数据估计或获悉的。
  • 参数通常不由编程者手动设置。
  • 参数通常被保存为学习模型的一部分。
  • 参数是机器学习算法的关键,它们通常由过去的训练数据中总结得出 。

超参数: 我们无法使用最小二乘法或者梯度下降法等最优化算法优化出来的数我们称为超参数。例如:岭回归中的参数深度学习超参数优化算法 什么是超参数调优_搜索_02.参数是机器学习算法的关键,它们通常由过去的训练数据中总结得出 。

  • 超参数通常用于帮助估计模型参数。
  • 超参数通常由人工指定。
  • 超参数通常可以使用启发式设置。
  • 超参数经常被调整为给定的预测建模问题。

对超参数进行调优一般有一下几种办法:

  • 网格搜索GridSearchCV()
  • 随机搜索 RandomizedSearchCV()

网格搜索GridSearchCV()

网格搜索的思想非常简单,比如你有2个超参数需要去选择,那你就把所有的超参数选择列出来分
别做排列组合。举个例子:深度学习超参数优化算法 什么是超参数调优_机器学习_03深度学习超参数优化算法 什么是超参数调优_机器学习_04 ,你可以做一个排列组合,即:{[0.01,0.01],[0.01,0.1],[0.01,1],[0.1,0.01],[0.1,0.1],[0.1,1.0],[1,0.01],[1,0.1],[1,1]} ,然后针对每组超参数分别建立一个模型,然后选择测试误差最小的那组超参数。换句话说,我们需要从超参数空间中寻找最优的超参数,很像一个网格中找到一个最优的节点,因此叫网格搜索。
sklearn 中网格搜索的API

随机搜索 RandomizedSearchCV()

网格搜索相当于暴力地从参数空间中每个都尝试一遍,然后选择最优的那组参数,这样的方法显
然是不够高效的,因为随着参数类别个数的增加,需要尝试的次数呈指数级增长。有没有一种更
加高效的调优方式呢?那就是使用随机搜索的方式,这种方式不仅仅高校,而且实验证明,随机
搜索法结果比稀疏化网格法稍好(有时候也会极差,需要权衡)。参数的随机搜索中的每个参数都
是从可能的参数值的分布中采样的。与网格搜索相比,这有两个主要优点:

  • 可以独立于参数数量和可能的值来选择计算成本。
  • 添加不影响性能的参数不会降低效率。

举个例子:

# 我们先来对未调参的SVR进行评价: 
from sklearn.svm import SVR # 引入SVR类
from sklearn.pipeline import make_pipeline # 引入管道简化学习流程
from sklearn.preprocessing import StandardScaler # 由于SVR基于距离计算,引入对数据进行标准
from sklearn.model_selection import GridSearchCV # 引入网格搜索调优
from sklearn.model_selection import cross_val_score # 引入K折交叉验证
from sklearn import datasets
boston = datasets.load_boston() # 返回一个类似于字典的类
X = boston.data
y = boston.target
features = boston.feature_names
pipe_SVR = make_pipeline(StandardScaler(),
 SVR())
score1 = cross_val_score(estimator=pipe_SVR,
 X = X,
 y = y,
 scoring = 'r2',
 cv = 10) # 10折交叉验证
print("CV accuracy: %.3f +/- %.3f" % ((np.mean(score1)),np.std(score1)))

#CV accuracy: 0.187 +/- 0.649

# 下面我们使用网格搜索来对SVR调参:
from sklearn.pipeline import Pipeline
pipe_svr = Pipeline([("StandardScaler",StandardScaler()),
 ("svr",SVR())])
param_range = [0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0]
param_grid = [{"svr__C":param_range,"svr__kernel":["linear"]}, # 注意__是指两个下划线,一个
 {"svr__C":param_range,"svr__gamma":param_range,"svr__kernel":["
gs = GridSearchCV(estimator=pipe_svr,
 param_grid = param_grid,
 scoring = 'r2',
 cv = 10) # 10折交叉验证
gs = gs.fit(X,y)
print("网格搜索最优得分:",gs.best_score_)
print("网格搜索最优参数组合:\n",gs.best_params_)

#网格搜索最优得分: 0.6081303070817233
#网格搜索最优参数组合:
{‘svr__C’: 1000.0, ‘svr__gamma’: 0.001, ‘svr__kernel’: ‘rbf’}

# 下面我们使用随机搜索来对SVR调参:
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform  # 引入均匀分布设置参数
pipe_svr = Pipeline([("StandardScaler",StandardScaler()),
                                                         ("svr",SVR())])
distributions = dict(svr__C=uniform(loc=1.0, scale=4),    # 构建连续参数的分布
                     svr__kernel=["linear","rbf"],                                   # 离散参数的集合
                    svr__gamma=uniform(loc=0, scale=4))

rs = RandomizedSearchCV(estimator=pipe_svr,
                                                     param_distributions = distributions,
                                                     scoring = 'r2',
                                                      cv = 10)       # 10折交叉验证
rs = rs.fit(X,y)
print("随机搜索最优得分:",rs.best_score_)
print("随机搜索最优参数组合:\n",rs.best_params_)

#随机搜索最优得分: 0.30021249798866756
#随机搜索最优参数组合:
{‘svr__C’: 1.4195029566223933, ‘svr__gamma’: 1.8683733769303625, ‘svr__kernel’: ‘linear’}