一、引言

单变量和多变量时序数据的单站点单步预测,好多小伙伴最近问我这个LSTM模型数据的输入的格式是怎么样的,今天我专门写一篇文章来聊一聊这个问题,希望对大家有所启发和帮助。

二、实现过程

2.1 单变量时序数据

1、原始data

原始数据是一个144行1列的(144,1)的dataframe:

lstm多变量预测风能pytorch_算法

2、数据集按照8:2划分,并进行归一化处理

train_data_scaler是一个(115,1)的二维数组:

                                                   

lstm多变量预测风能pytorch_深度学习_02

lstm多变量预测风能pytorch_算法_03

3、创建滑动窗口数据集

将train_data_scaler集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数):

def create_sliding_windows(data, window_size):
    X, Y = [], []
    for i in range(len(data) - window_size):
        X.append(data[i:i+window_size, 0:data.shape[1]])
        Y.append(data[i+window_size,0])
    return np.array(X), np.array(Y)
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)

这里我假设窗口window_size设为12,i的范围0-102,103取不到:

当i=0时,取出train_data_scaler第【1-12】行第【1】列的12条数据作为X_train[0],取出train_data_scaler第【13】行第【1】列的1条数据作为Y_train[0];

当i=1时,取出train_data_scaler第【2-13】行第【1】列的12条数据作为X_train[1],取出train_data_scaler第【14】行第【1】列的1条数据作为Y_train[1];

...

当i=102时,取出train_data_scaler第【103-114】行第【1】列的12条数据作为X_train[102],取出train_data_scaler第【115】行第【1】列的1条数据作为Y_train[102];

返回的X_train是一个(103,12,1)的三维数组;Y_train是一个(103,1)的二维数组;

X_train = np.reshape(X_train, (X_train.shape[0], window_size, 1)

经过滑动窗口之后返回的形状已经是LSTM所需的形状了,所以这句话可以省略。

4、构建 LSTM 模型

# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(window_size, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

LSTM的input_shape=(时间步长,特征数),其实就是一个样本输入的形状。

5、训练 LSTM 模型

# 训练 LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)
  • X_train是一个(103,12,1)的三维数组,三个维度分别表示(样本数,时间步长,特征数)
  • Y_train是一个(103,1)的二维数组,两个维度分别表示(样本数,标签)
  • 类似一个103行(12*1+1)列的表格,前(12*1)列是特征,第(12*1+1)列是标签

2.2 多变量时序数据

1、原始的data

是一个(5203,5)的dataframe:

lstm多变量预测风能pytorch_python_04

2、数据集按照8:2划分,并进行归一化处理

train_data_scaler是一个(4162,5)的二维数组:

lstm多变量预测风能pytorch_深度学习_05

3、创建滑动窗口数据集

将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数):

def create_sliding_windows(data, window_size):
    X, Y = [], []
    for i in range(len(data) - window_size):
        X.append(data[i:i+window_size, 0:data.shape[1]])
        Y.append(data[i+window_size,0])
    return np.array(X), np.array(Y)
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)

这里我假设窗口window_size设为30,i的范围0-4131:

当i=0时,取出train_data_scaler第【1-30】行第【1-5】列的12条数据作为X_train[0],取出train_data_scaler第【31】行第【1】列的1条数据作为Y_train[0];

当i=1时,取出train_data_scaler第【2-31】行第【1-5】列的12条数据作为X_train[1],取出train_data_scaler第【32】行第【1】列的1条数据作为Y_train[1];

...

当i=4131时,取出train_data_scaler第【4132-4161】行第【1-5】列的12条数据作为X_train[4131],取出train_data_scaler第【4162】行第【1】列的1条数据作为Y_train[4131];

返回的X_train是一个(4132,30,5)的三维数组;Y_train是一个(4132,1)的二维数组;

X_train = np.reshape(X_train, (X_train.shape[0], window_size, 5)

经过滑动窗口之后返回的形状已经是LSTM所需的形状了,所以这句话可以省略。

4、构建 LSTM 模型

# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(window_size, 5)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

LSTM的input_shape=(时间步长,特征数),其实就是一个样本输入的形状。

5、训练 LSTM 模型

# 训练 LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)
  • X_train是一个(4132,30,5)的三维数组;(样本数,时间步长,特征数)
  • Y_train是一个(4132,1)的二维数组;(样本数,标签)
  • 类似一个4132行(30*5+1)列的表格,前(30*5)列是特征,第(30*5+1)列是标签

三、小结

由于滑动窗口,实际的训练数据数量少一个窗口数量,实际能预测的数据量也少一个窗口数量。

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。