1 下载
2 安装
2.1 机器规划
cluster2-slave2, cluster2-slave1, cluster2-master 三台机器
2.2 上传解压
① 上传到规划好的目录
/home/hadoop/liucf/software
② 解压
[hadoop@cluster2-slave2 software]$ tar -xvf kafka_2.11-2.1.1.tgz -C ../module/
2.3 配置kafka
① 重命名文件
[hadoop@cluster2-slave2 module]$ mv kafka_2.11-2.1.1 kafka-2.1.1
② 在 /home/hadoop/liucf/software/kafka-2.1.1/ 目录下创建data目录
mkdir -p /home/hadoop/liucf/module/kafka-2.1.1/data
③修改配置文件
[hadoop@cluster2-slave2 data]$ cd /home/hadoop/liucf/module/kafka-2.1.1/config/
[hadoop@cluster2-slave2 config]$ vim server.properties
设置具体值如下
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# see kafka.server.KafkaConfig for additional details and defaults
############################# Server Basics #############################
# The id of the broker. This must be set to a unique integer for each broker.
# broker 的全局唯一编号不能重复,也就是每台节点不同可以设置成0 1 2..等等
broker.id=1
############################# Socket Server Settings #############################
# The address the socket server listens on. It will get the value returned from
# java.net.InetAddress.getCanonicalHostName() if not configured.
# FORMAT:
# listeners = listener_name://host_name:port
# EXAMPLE:
# listeners = PLAINTEXT://your.host.name:9092
#listeners=PLAINTEXT://:9092
# Hostname and port the broker will advertise to producers and consumers. If not set,
# it uses the value for "listeners" if configured. Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092
# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL
# The number of threads that the server uses for receiving requests from the network and sending responses to the network
# 处理网络请求的线程数量
num.network.threads=3
# The number of threads that the server uses for processing requests, which may include disk I/O
# 用来处理磁盘 IO 的线程数量
num.io.threads=8
# The send buffer (SO_SNDBUF) used by the socket server
# 发送套接字的缓冲区大小
socket.send.buffer.bytes=102400
# The receive buffer (SO_RCVBUF) used by the socket server
# 接收套接字的缓冲区大小
socket.receive.buffer.bytes=102400
# The maximum size of a request that the socket server will accept (protection against OOM)
# 请求套接字的缓冲区大小
socket.request.max.bytes=104857600
############################# Log Basics #############################
# A comma separated list of directories under which to store log files
# kafka 运行日志存放的路径,实际上是kafka数据的目录
# log.dirs=/tmp/kafka-logs
log.dirs=/home/hadoop/liucf/software/kafka-2.1.1/data
# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
# topic 在当前 broker 上的分区个数
num.partitions=1
# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
# 用来恢复和清理 data 下数据的线程数量
num.recovery.threads.per.data.dir=1
############################# Internal Topic Settings #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
############################# Log Flush Policy #############################
# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
# 1. Durability: Unflushed data may be lost if you are not using replication.
# 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
# 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.
# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000
# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000
############################# Log Retention Policy #############################
# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.
# The minimum age of a log file to be eligible for deletion due to age
# segment 文件保留的最长时间,超时将被删除
log.retention.hours=168
# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824
# The maximum size of a log segment file. When this size is reached a new log segment will be created.
#日志段文件的最大大小。当达到这个大小时,将创建一个新的日志段。
log.segment.bytes=1073741824
# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
# 检查日志段以确定它们是否可以被删除的时间间隔 300000毫秒
log.retention.check.interval.ms=300000
############################# Zookeeper #############################
# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
# 配置连接 Zookeeper 集群地址
zookeeper.connect=cluster2-master:2181,cluster2-slave1:2181,cluster2-slave2:2181
# Timeout in ms for connecting to zookeeper
# 连接到zookeeper的6000毫秒超时
zookeeper.connection.timeout.ms=6000
############################# Group Coordinator Settings #############################
# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0
2.4 分发到另外2台机器
①分发
scp -r kafka-2.1.1 hadoop@cluster2-master:/home/hadoop/liucf/module
scp -r kafka-2.1.1 hadoop@cluster2-slave1:/home/hadoop/liucf/module
②修改cluster2-master和cluster2-slave1机器上kafka全局唯一编号分别为
cluster2-master:
cluster2-slave1:
cluster2-slave2
2.5 三台机器都配置KAFKA_HOME
vim /etc/profile
export KAFKA_HOME=/home/hadoop/liucf/module/kafka-2.1.1
export PATH=$PATH:$KAFKA_HOME/bin
source /etc/profile
2.6 kafka集群启动&停止脚本
① 脚本
vim kafak.sh
#!/bin/bash
case $1 in
"start"){
for i in cluster2-master cluster2-slave1 cluster2-slave2
do
echo "************$i kafka server starting***********"
ssh $i "source /etc/profile;$KAFKA_HOME/bin/kafka-server-start.sh -daemon $KAFKA_HOME/config/server.properties"
done
};;
"stop"){
for i in cluster2-master cluster2-slave1 cluster2-slave2
do
echo "************$i kafka server stopping***********"
ssh $i "source /etc/profile;$KAFKA_HOME/bin/kafka-server-stop.sh stop"
done
};;
esac
②测试启动
③ 测试停止
安装完成
3 kafka命令测试
因为我配置了KAFKA_HOME 所以下面的命令不用指定kafka的bin目录
3.1 查看 Kafka Topic 列表
kafka-topics.sh --zookeeper cluster2-slave2:2181 --list
3.2 创建 Kafka Topic
① 创建启动日志主题
kafka-topics.sh --zookeeper cluster2-master:2181,cluster2-slave1:2181,cluster2-slave2:2181 --create --replication-factor 3 --partitions 1 --topic topic_start
② 创建事件日志主题
kafka-topics.sh --zookeeper cluster2-master:2181,cluster2-slave1:2181,cluster2-slave2:2181 --create --replication-factor 3 --partitions 1 --topic topic_event
3.3 删除 Kafka Topic
如果 delete.topic.enable 没有设置默认是false不能删除
执行删除会报错
所以需要添加配置然后重启kafka
delete.topic.enable=true
① 删除启动日志主题
kafka-topics.sh --delete --zookeeper cluster2-master:2181,cluster2-slave1:2181,cluster2-slave2:2181 --topic topic_start
② 删除事件日志主题
kafka-topics.sh --delete --zookeeper cluster2-master:2181,cluster2-slave1:2181,cluster2-slave2:2181 --topic topic_event
删除测试完成,我再把2个topic创建回来后面会用到
kafka-topics.sh --zookeeper cluster2-master:2181,cluster2-slave1:2181,cluster2-slave2:2181 --create --replication-factor 1 --partitions 1 --topic topic_start
kafka-topics.sh --zookeeper cluster2-master:2181,cluster2-slave1:2181,cluster2-slave2:2181 --create --replication-factor 3 --partitions 1 --topic topic_event
3.4 Kafka 生产消息
kafka-console-producer.sh --broker-list cluster2-slave2:9092 --topic topic_start
3.5 Kafka 消费消息
kafka-console-consumer.sh --bootstrap-server cluster2-slave2:9092 --from-beginning --topic topic_start
3.6 查看 Kafka Topic 详情
kafka-topics.sh --zookeeper cluster2-slave2:2181 --describe --topic topic_start
4 kafka 压力测
4.1 Kafka 压测
用 Kafka 官方自带的脚本,对 Kafka 进行压测。Kafka 压测时,可以查看到哪个地方出现了瓶颈(CPU,内存,网络 IO)。一般都是网络 IO 达到瓶颈。
压测脚本
kafka-consumer-perf-test.sh
kafka-producer-perf-test.sh
4.2 Kafka Producer 压力测试
kafka-producer-perf-test.sh --topic test --record-size 100 --num-records 100000 --throughput -1 --producer-props bootstrap.servers=cluster2-master:9092,cluster2-slave1:9092,cluster2-slave2:9092
说明:
record-size 是一条信息有多大,单位是字节。
num-records 是总共发送多少条信息。
throughput 是每秒多少条信息,设成-1,表示不限流,可测出生产者最大吞吐量。
kafka打印:
100000 records sent, 112739.571590 records/sec (10.75 MB/sec), 322.86 ms avg latency, 400.00 ms max latency, 352 ms 50th, 394 ms 95th, 397 ms 99th, 399 ms 99.9th.
参数解析:
- 本例中一共写入 10w 条消息,
- 吞吐量为 10.75 MB/sec,
- 每次写入的平均延迟 为 322.86 毫秒,
- 最大的延迟为 400.00 毫秒。
4.3 Kafka Consumer 压力测试
Consumer 的测试,如果这四个指标(IO,CPU,内存,网络)都不能改变,考虑增加 分区数来提升性能。
kafka-consumer-perf-test.sh --broker-list cluster2-master:9092,cluster2-slave1:9092,cluster2-slave2:9092 --topic test --fetch-size 10000 --messages 10000000 --threads 1
参数说明:
- --broker-list 指定 kafka 的链接信息
- --topic 指定 topic 的名称
- --fetch-size 指定每次 fetch 的数据的大小
- --messages 总共要消费的消息个数
- --threads 表示用几个线程来处理
测试结果说明:
start.time, end.time, data.consumed.in.MB, MB.sec, data.consumed.in.nMsg, nMsg.sec, rebalance.time.ms, fetch.time.ms, fetch.MB.sec, fetch.nMsg.sec
WARNING: Exiting before consuming the expected number of messages: timeout (10000 ms) exceeded. You can use the --timeout option to increase the timeout.
2020-07-27 00:31:00:162, 2020-07-27 00:31:10:749, 9.5367, 0.9008, 100000, 9445.5464, 7, 10580, 0.9014, 9451.7958
start.time, end.time, data.consumed.in.MB, MB.sec, data.consumed.in.nMsg, nMsg.sec, rebalance.time.ms, fetch.time.ms, fetch.MB.sec, fetch.nMsg.sec
2020-07-27 00:31:00:162, 2020-07-27 00:31:10:749, 9.5367, 0.9008, 100000, 9445.5464, 7, 10580, 0.9014, 9451.7958
- 开始测试时间(start.time),2020-07-27 00:31:00:162
- 测试结束数据(end.time),2020-07-27 00:31:10:749, 9.5367
- 共消费数据 (data.consumed.in.MB)9.5367 MB,
- 每秒数据-吞吐量(MB.sec)0.9008MB / sec
- 一共消费数据条数(data.consumed.in.nMsg)100000条
- 平均每秒消费(9445.5464)9445.5464,条。
- rebalance.time.ms 7
- 一秒获取次数 (fetch.time.ms) 10580
- 一秒获取数据量 (fetch.MB.sec), 0.9014MB
- 一秒获取数据条数(fetch.nMsg.sec) 9451.7958
5 Kafka 机器数量计算
Kafka 机器数量(经验公式)=2*(峰值生产速度*副本数/100)+1
先拿到峰值生产速度,
再根据设定的副本数,
就能预估出需要部署 Kafka 的数量。
比如我们的峰值压测的生产速度是 50M/s。副本数为 2。
Kafka 机器数量=2*(50*2/100)+ 1=3 台
因为峰值的生产速率一般小于50M每秒,所以一般得出的台数都是3
这是一个迭代的过程,峰值大于50M每秒了就需要增加kafka机器数,然后在压测看看是否满足最大峰值