上一篇我们介绍了泰勒公式以及它的证明过程,今天我们来看看一些常用函数的泰勒公式。首先回顾一下:

python输入泰勒公式 泰勒公式怎么带入_算法

1

对于零点处的泰勒公式,我们又称为麦克劳林公式

python输入泰勒公式 泰勒公式怎么带入_python输入泰勒公式_02

通常情况下,我们只研究函数的麦克劳林公式,因为其他任何的取值都可以转化为在零点的情况:

python输入泰勒公式 泰勒公式怎么带入_python输入泰勒公式_03

下面来看几个基本初等函数的泰勒公式。

  • 指数函数

python输入泰勒公式 泰勒公式怎么带入_深度学习_04

  • 三角函数

python输入泰勒公式 泰勒公式怎么带入_机器学习_05

python输入泰勒公式 泰勒公式怎么带入_机器学习_06

  • 幂函数

python输入泰勒公式 泰勒公式怎么带入_算法_07

利用上面的公式我们可以求一些复合函数的泰勒公式。举几个例子。

  • 例1

python输入泰勒公式 泰勒公式怎么带入_机器学习_08

  • 例2

python输入泰勒公式 泰勒公式怎么带入_机器学习_09

2

对于泰勒公式,我们有定理:

python输入泰勒公式 泰勒公式怎么带入_python输入泰勒公式_10

证明非常简单,直接对f(x)的泰勒公式求导即可。这里不再给出。我们来看剩余基本初等函数的泰勒公式。

  • 对数函数

python输入泰勒公式 泰勒公式怎么带入_深度学习_11

  • 反三角函数

python输入泰勒公式 泰勒公式怎么带入_机器学习_12

3

泰勒公式应用的范围很广,我们举例来说明!

1.近似计算

我们注意到余项,其实是一个很高阶的无穷小量,它代表用泰勒多项式近似原函数时的误差,这个误差在一定程度代表了近似的精度。利用泰勒公式我们可以计算某些近似值,比如自然底数e

python输入泰勒公式 泰勒公式怎么带入_人工智能_13

可见,这样估计的误差是很小的,当n取值越大,这个误差就越小。当n趋于无穷时,问题就转化为求数列极限。

泰勒公式计算近似值时并非是所有误差都很小的:

python输入泰勒公式 泰勒公式怎么带入_人工智能_14

结果到小数点第二位就不精确了。因此,这样的近似结果误差率很大,我们需要另辟蹊径:

python输入泰勒公式 泰勒公式怎么带入_人工智能_15

2.求极限

泰勒公式在求极限问题上有时候是非常好用的。

python输入泰勒公式 泰勒公式怎么带入_机器学习_16

python输入泰勒公式 泰勒公式怎么带入_python输入泰勒公式_17

3.证明不等式

泰勒公式第三个作用是可以用来证明一些不等式。

python输入泰勒公式 泰勒公式怎么带入_机器学习_18

4.求曲线渐进性

我们知道,曲线渐近线的充要条件是:

python输入泰勒公式 泰勒公式怎么带入_机器学习_19

下面看一个例子。

python输入泰勒公式 泰勒公式怎么带入_人工智能_20