摘要

在深度学习的分类任务中,对模型的评估或测试时需要计算其在验证集或测试集上的预测精度(prediction/accuracy)、召回率(recall)和F1值。本文首先简要介绍如何计算精度、召回率和F1值,其次给出python编写的模块,可直接将该模块导入在自己的项目中,最后给出这个模块的实际使用效果。

混淆矩阵及P、R、F1计算原理

混淆矩阵

python 计算e python计算f1_python 计算e

P、R、F1值

基于混淆矩阵可以很轻松的计算出精度、召回率和F1值,以及微平均和宏平均。

  • 样本的总体精度(微平均,all_prediction):混淆矩阵主对角线上元素和除以混淆矩阵所有元素和。公式为:

python 计算e python计算f1_召回率_02

  • 某个类的精度(label_i_prediction):元素除以下标为的纵坐标元素和。公式为:

python 计算e python计算f1_混淆矩阵_03

  • 某个类的召回率(label_i_recall):元素除以下标为 iii 的横坐标元素和。公式为:

python 计算e python计算f1_加载_04

  • 样本的总体召回率(宏平均, MACRO-averaged): 所有类的召回率的平均值。公式为:

python 计算e python计算f1_加载_05

  • 样本的总体精度(宏平均 ,MACRO-averaged):区别于第一个,宏平均为所有类的精度的均值。公式为:

python 计算e python计算f1_python 计算e_06

  • F1值:总体样本(或某个类)的精度和召回率满足如下:

python 计算e python计算f1_python 计算e_07

样例计算

为了更加清楚的理解上面的计算公式,给出一个关系抽取的实例,例如下面的混淆矩阵,横坐标为实际类,纵坐标为预测的类,一共19个类。

python 计算e python计算f1_python 计算e_08

总体均值为:2052/2717=75.52%2052/2717=75.52\%2052/2717=75.52%
各个类的精度、召回率和F1值为:

python 计算e python计算f1_加载_09

宏平均精度为71.09%、宏平均召回率为71.77%、F1值为71.43。

python模块

为了在实际实验中更快捷的计算相应值,许多集成的perl脚本可以很轻松的实现计算,但为了更加方便用户编辑以及无缝接入自己的项目中,本文实现python的简单脚本。用户仅需import即可调用,源码如下:

#####模块说明######
'''
根据传入的文件true_label和predict_label来求模型预测的精度、召回率和F1值,另外给出微观和宏观取值。
powered by wangjianing 2019.3.2

'''
import numpy as np

def getLabelData(file_dir):
    '''
    模型的预测生成相应的label文件,以及真实类标文件,根据文件读取并加载所有label
    1、参数说明:
        file_dir:加载的文件地址。
        文件内数据格式:每行包含两列,第一列为编号1,2,...,第二列为预测或实际的类标签名称。两列以空格为分隔符。
        需要生成两个文件,一个是预测,一个是实际类标,必须保证一一对应,个数一致
    2、返回值:
        返回文件中每一行的label列表,例如['true','false','false',...,'true']
    '''
    labels = []
    with open(file_dir,'r',encoding="utf-8") as f:
        for i in f.readlines():
            labels.append(i.strip().split(' ')[1])
    return labels

def getLabel2idx(labels):
    '''
    获取所有类标
    返回值:label2idx字典,key表示类名称,value表示编号0,1,2...
    '''
    label2idx = dict()
    for i in labels:
        if i not in label2idx:
            label2idx[i] = len(label2idx)
    return label2idx


def buildConfusionMatrix(predict_file,true_file):
    '''
    针对实际类标和预测类标,生成对应的矩阵。
    矩阵横坐标表示实际的类标,纵坐标表示预测的类标
    矩阵的元素(m1,m2)表示类标m1被预测为m2的个数。
    所有元素的数字的和即为测试集样本数,对角线元素和为被预测正确的个数,其余则为预测错误。
    返回值:返回这个矩阵numpy

    '''
    true_labels = getLabelData(true_file)
    predict_labels = getLabelData(predict_file)
    label2idx = getLabel2idx(true_labels)
    confMatrix = np.zeros([len(label2idx),len(label2idx)],dtype=np.int32)
    for i in range(len(true_labels)):
        true_labels_idx = label2idx[true_labels[i]]
        predict_labels_idx = label2idx[predict_labels[i]]
        confMatrix[true_labels_idx][predict_labels_idx] += 1
    return confMatrix,label2idx



def calculate_all_prediction(confMatrix):
    '''
    计算总精度:对角线上所有值除以总数
    '''
    total_sum = confMatrix.sum()
    correct_sum = (np.diag(confMatrix)).sum()
    prediction = round(100*float(correct_sum)/float(total_sum),2)
    return prediction

def calculate_label_prediction(confMatrix,labelidx):
    '''
    计算某一个类标预测精度:该类被预测正确的数除以该类的总数
    '''
    label_total_sum = confMatrix.sum(axis=0)[labelidx]
    label_correct_sum = confMatrix[labelidx][labelidx]
    prediction = 0
    if label_total_sum != 0:
        prediction = round(100*float(label_correct_sum)/float(label_total_sum),2)
    return prediction

def calculate_label_recall(confMatrix,labelidx):
    '''
    计算某一个类标的召回率:
    '''
    label_total_sum = confMatrix.sum(axis=1)[labelidx]
    label_correct_sum = confMatrix[labelidx][labelidx]
    recall = 0
    if label_total_sum != 0:
        recall = round(100*float(label_correct_sum)/float(label_total_sum),2)
    return recall

def calculate_f1(prediction,recall):
    if (prediction+recall)==0:
        return 0
    return round(2*prediction*recall/(prediction+recall),2)

def main(predict_file,true_file):
    '''
    该为主函数,可将该函数导入自己项目模块中
    打印精度、召回率、F1值的格式可自行设计
    '''
    #读取文件并转化为混淆矩阵,并返回label2idx
    confMatrix,label2idx = buildConfusionMatrix(predict_file,true_file)
    total_sum = confMatrix.sum()
    all_prediction = calculate_all_prediction(confMatrix)
    label_prediction = []
    label_recall = []
    print('total_sum=',total_sum,',label_num=',len(label2idx),'\n')
    for i in label2idx:
        print('  ',i)
    print('  ')
    for i in label2idx:
        print(i,end=' ')
        label_prediction.append(calculate_label_prediction(confMatrix,label2idx[i]))
        label_recall.append(calculate_label_recall(confMatrix,label2idx[i]))
        for j in label2idx:
            labelidx_i = label2idx[i]
            label2idx_j = label2idx[j]
            print('  ',confMatrix[labelidx_i][label2idx_j],end=' ')
        print('\n')

    print('prediction(accuracy)=',all_prediction,'%')
    print('individual result\n')
    for ei,i in enumerate(label2idx):
        print(ei,'\t',i,'\t','prediction=',label_prediction[ei],'%,\trecall=',label_recall[ei],'%,\tf1=',calculate_f1(label_prediction[ei],label_recall[ei]))
    p = round(np.array(label_prediction).sum()/len(label_prediction),2)
    r = round(np.array(label_recall).sum()/len(label_prediction),2)
    print('MACRO-averaged:\nprediction=',p,'%,recall=',r,'%,f1=',calculate_f1(p,r))

使用说明

1、在自己的项目中,做模型的测试时,需要将实际类及预测类分别写入文件,格式例如下图:第一列为编号,第二列为类,中间用一个字符的空格隔开。

python 计算e python计算f1_加载_10

2、在测试的文件中添加导入模块语句

import prf1(假设这个脚本保存为 prf1.py)

3、模型预测后,执行(其中predict_file和true_file分别表示预测类文件和实际类文件):

prf1.main(predict_file,true_file)

使用效果

博主将该脚本用在自己的实验中,做关于中文学科知识点关系抽取实验中,输出效果如图:

python 计算e python计算f1_加载_11

python 计算e python计算f1_python 计算e_12