十三、类特性
不光是 Python,大多数面向对象编程语言(诸如 C++、Java 等)都具备 3 个典型特征,即封装、继承和多态。
13.1 类的封装
本节重点讲解 Python 类的封装特性,继承和多态会在后续章节给大家做详细讲解。
简单的理解封装(Encapsulation),即在设计类时,刻意地将一些属性和方法隐藏在类的内部,这样在使用此类时,将无法直接以“类对象.属性名”(或者“类对象.方法名(参数)”)的形式调用这些属性(或方法),而只能用未隐藏的类方法间接操作这些隐藏的属性和方法。
就好比使用电脑,我们只需要学会如何使用键盘和鼠标就可以了,不用关心内部是怎么实现的,因为那是生产和设计人员该操心的。
注意,封装绝不是将类中所有的方法都隐藏起来,一定要留一些像键盘、鼠标这样可供外界使用的类方法。
那么,类为什么要进行封装,这样做有什么好处呢?
首先,封装机制保证了类内部数据结构的完整性,因为使用类的用户无法直接看到类中的数据结构,只能使用类允许公开的数据,很好地避免了外部对内部数据的影响,提高了程序的可维护性。
除此之外,对一个类实现良好的封装,用户只能借助暴露出来的类方法来访问数据,我们只需要在这些暴露的方法中加入适当的控制逻辑,即可轻松实现用户对类中属性或方法的不合理操作。
并且,对类进行良好的封装,还可以提高代码的复用性。
- Python 类如何进行封装?
和其它面向对象的编程语言(如 C++、Java)不同,Python 类中的变量和函数,不是公有的(类似 public 属性),就是私有的(类似 private),这 2 种属性的区别如下:
- public:公有属性的类变量和类函数,在类的外部、类内部以及子类(后续讲继承特性时会做详细介绍)中,都可以正常访问;
- private:私有属性的类变量和类函数,只能在本类内部使用,类的外部以及子类都无法使用。
但是,Python 并没有提供 public、private 这些修饰符。为了实现类的封装,Python 采取了下面的方法:
默认情况下,Python 类中的变量和方法都是公有(public)的,它们的名称前都没有下划线(_);
如果类中的变量和函数,其名称以双下划线“__”开头,则该变量(函数)为私有变量(私有函数),其属性等同于 private。
除此之外,还可以定义以单下划线“_”开头的类属性或者类方法(例如 name、display(self)),这种类属性和类方法通常被视为私有属性和私有方法,虽然它们也能通过类对象正常访问,但这是一种约定俗称的用法,初学者一定要遵守。
注意,Python 类中还有以双下划线开头和结尾的类方法(例如类的构造函数__init(self)),这些都是 Python 内部定义的,用于 Python 内部调用。我们自己定义类属性或者类方法时,不要使用这种格式。
例如,如下程序示范了 Python 的封装机制:
class CLanguage :
def setname(self, name):
if len(name) < 3:
raise ValueError('名称长度必须大于3!')
self.__name = name
def getname(self):
return self.__name
#为 name 配置 setter 和 getter 方法
name = property(getname, setname)
def setadd(self, add):
if add.startswith("http://"):
self.__add = add
else:
raise ValueError('地址必须以 http:// 开头')
def getadd(self):
return self.__add
#为 add 配置 setter 和 getter 方法
add = property(getadd, setadd)
#定义个私有方法
def __display(self):
print(self.__name,self.__add)
clang = CLanguage()
clang.name = "python学习"
print(clang.name)
print(clang.add)
程序运行结果为:
python学习
上面程序中,CLanguage 将 name 和 add 属性都隐藏了起来,但同时也提供了可操作它们的“窗口”,也就是各自的 setter 和 getter 方法,这些方法都是公有(public)的。
不仅如此,以 add 属性的 setadd() 方法为例,通过在该方法内部添加控制逻辑,即通过调用 startswith() 方法,控制用户输入的地址必须以“http://”开头,否则程序将会执行 raise 语句抛出 ValueError 异常。
有关 raise 的具体用法,后续章节会做详细的讲解,这里可简单理解成,如果用户输入不规范,程序将会报错。
通过此程序的运行逻辑不难看出,通过对 CLanguage 类进行良好的封装,使得用户仅能通过暴露的 setter() 和 getter() 方法操作 name 和 add 属性,而通过对 setname() 和 setadd() 方法进行适当的设计,可以避免用户对类中属性的不合理操作,从而提高了类的可维护性和安全性。
细心的读者可能还发现,CLanguage 类中还有一个 __display() 方法,由于该类方法为私有(private)方法,且该类没有提供操作该私有方法的“窗口”,因此我们无法在类的外部使用它。换句话说,如下调用 __display() 方法是不可行的:
#尝试调用私有的 display() 方法
clang.__display()
这会导致如下错误:
Traceback (most recent call last):
File "D:\python3.6\1.py", line 33, in <module>
clang.__display()
AttributeError: 'CLanguage' object has no attribute '__display'
那么,类似 __display() 这样的类方法,就没有办法调用了吗?
其实并非如此,只是当我们使用双下划线开头创建私有属性或者方法时,Python解释器会在内部将此变量进行了变形,示例如下:
>>> class MyClass:
... _x=1
... __y=2
... def __z(self):
... print("这是一个私有方法")
...
>>> m=MyClass()
>>> dir(m)
['_MyClass__y', '_MyClass__z', '__class__', '__delattr__', '__dict__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__',
'__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', '_x']
>>>
我们可以看到:
_x依然是_x访问;
__y (私有变量)在对象中变成了 _MyClass__y;
__z (私有方法)在对象中变成了 _MyClass__z;
因此,如果需要访问私有属性/方法,需要带上_类名
13.2 类的继承
13.2.1 继承含义
Python 类的封装、继承、多态 3 大特性,前面章节已经详细介绍了 Python 类的封装,本节继续讲解 Python 类的继承机制。
继承机制经常用于创建和现有类功能类似的新类,又或是新类只需要在现有类基础上添加一些成员(属性和方法),但又不想直接将现有类代码复制给新类。也就是说,通过使用继承这种机制,可以轻松实现类的重复使用。
举个例子,假设现有一个 Shape 类,该类的 draw() 方法可以在屏幕上画出指定的形状,现在需要创建一个 Form 类,要求此类不但可以在屏幕上画出指定的形状,还可以计算出所画形状的面积。要创建这样的类,笨方法是将 draw() 方法直接复制到新类中,并添加计算面积的方法。实现代码如下所示:
class Shape:
def draw(self,content):
print("画",content)
class Form:
def draw(self,content):
print("画",content)
def area(self):
#....
print("此图形的面积为...")
当然还有更简单的方法,就是使用类的继承机制。实现方法为:让 From 类继承 Shape 类,这样当 From 类对象调用 draw() 方法时,Python 解释器会先去 From 中找以 draw 为名的方法,如果找不到,它还会自动去 Shape 类中找。如此,我们只需在 From 类中添加计算面积的方法即可,示例代码如下:
class Shape:
def draw(self,content):
print("画",content)
class Form(Shape):
def area(self):
#....
print("此图形的面积为...")
上面代码中,class From(Shape) 就表示 From 继承 Shape。
Python 中,实现继承的类称为子类,被继承的类称为父类(也可称为基类、超类)。因此在上面这个样例中,From 是子类,Shape 是父类。
子类继承父类时,只需在定义子类时,将父类(可以是多个)放在子类之后的圆括号里即可。语法格式如下:
class 类名(父类1, 父类2, ...):
#类定义部分
注意,如果该类没有显式指定继承自哪个类,则默认继承 object 类(object 类是 Python 中所有类的父类,即要么是直接父类,要么是间接父类)。另外,Python 的继承是多继承机制(和 C++ 一样),即一个子类可以同时拥有多个直接父类。
注意,有读者可能还听说过“派生”这个词汇,它和继承是一个意思,只是观察角度不同而已。换句话话,继承是相对子类来说的,即子类继承自父类;而派生是相对于父类来说的,即父类派生出子类。
了解了继承机制的含义和语法之后,下面代码演示了继承机制的用法:
class People:
def say(self):
print("我是一个人,名字是:",self.name)
class Animal:
def display(self):
print("人也是高级动物")
#同时继承 People 和 Animal 类
#其同时拥有 name 属性、say() 和 display() 方法
class Person(People, Animal):
pass
zhangsan = Person()
zhangsan.name = "张三"
zhangsan.say()
zhangsan.display()
运行结果,结果为:
我是一个人,名字是: 张三
人也是高级动物
可以看到,虽然 Person 类为空类,但由于其继承自 People 和 Animal 这 2 个类,因此实际上 Person 并不空,它同时拥有这 2 个类所有的属性和方法。
没错,子类拥有父类所有的属性和方法,即便该属性或方法是私有(private)的。
事实上,大部分面向对象的编程语言,都只支持单继承,即子类有且只能有一个父类。而 Python 却支持多继承(C++也支持多继承)。
和单继承相比,多继承容易让代码逻辑复杂、思路混乱,一直备受争议,中小型项目中较少使用,后来的 Java、C#、PHP 等干脆取消了多继承。
使用多继承经常需要面临的问题是,多个父类中包含同名的类方法。对于这种情况,Python 的处置措施是:根据子类继承多个父类时这些父类的前后次序决定,即排在前面父类中的类方法会覆盖排在后面父类中的同名类方法。
举个例子:
class People:
def __init__(self):
self.name = People
def say(self):
print("People类",self.name)
class Animal:
def __init__(self):
self.name = Animal
def say(self):
print("Animal类",self.name)
#People中的 name 属性和 say() 会遮蔽 Animal 类中的
class Person(People, Animal):
pass
zhangsan = Person()
zhangsan.name = "张三"
zhangsan.say()
程序运行结果为:
People类 张三
可以看到,当 Person 同时继承 People 类和 Animal 类时,People 类在前,因此如果 People 和 Animal 拥有同名的类方法,实际调用的是 People 类中的。
虽然 Python 在语法上支持多继承,但逼不得已,建议大家不要使用多继承。
13.2.2 父类方法重写
前面讲过在 Python 中,子类继承了父类,那么子类就拥有了父类所有的类属性和类方法。通常情况下,子类会在此基础上,扩展一些新的类属性和类方法。
但凡事都有例外,我们可能会遇到这样一种情况,即子类从父类继承得来的类方法中,大部分是适合子类使用的,但有个别的类方法,并不能直接照搬父类的,如果不对这部分类方法进行修改,子类对象无法使用。针对这种情况,我们就需要在子类中重复父类的方法。
举个例子,鸟通常是有翅膀的,也会飞,因此我们可以像如下这样定义个和鸟相关的类:
class Bird:
#鸟有翅膀
def isWing(self):
print("鸟有翅膀")
#鸟会飞
def fly(self):
print("鸟会飞")
但是,对于鸵鸟来说,它虽然也属于鸟类,也有翅膀,但是它只会奔跑,并不会飞。针对这种情况,可以这样定义鸵鸟类:
class Ostrich(Bird):
# 重写Bird类的fly()方法
def fly(self):
print("鸵鸟不会飞")
可以看到,因为 Ostrich 继承自 Bird,因此 Ostrich 类拥有 Bird 类的 isWing() 和 fly() 方法。其中,isWing() 方法同样适合 Ostrich,但 fly() 明显不适合,因此我们在 Ostrich 类中对 fly() 方法进行重写。
重写,有时又称覆盖,是一个意思,指的是对类中已有方法的内部实现进行修改。
在上面 2 段代码的基础上,添加如下代码并运行:
class Bird:
#鸟有翅膀
def isWing(self):
print("鸟有翅膀")
#鸟会飞
def fly(self):
print("鸟会飞")
class Ostrich(Bird):
# 重写Bird类的fly()方法
def fly(self):
print("鸵鸟不会飞")
# 创建Ostrich对象
ostrich = Ostrich()
#调用 Ostrich 类中重写的 fly() 类方法
ostrich.fly()
运行结果为:
鸵鸟不会飞
显然,ostrich 调用的是重写之后的 fly() 类方法。
事实上,如果我们在子类中重写了从父类继承来的类方法,那么当在类的外部通过子类对象调用该方法时,Python 总是会执行子类中重写的方法。
这就产生一个新的问题,即如果想调用父类中被重写的这个方法,该怎么办呢?
很简单,前面讲过,Python 中的类可以看做是一个独立空间,而类方法其实就是出于该空间中的一个函数。而如果想要全局空间中,调用类空间中的函数,只需要在调用该函数时备注类名即可。举个例子:
class Bird:
#鸟有翅膀
def isWing(self):
print("鸟有翅膀")
#鸟会飞
def fly(self):
print("鸟会飞")
class Ostrich(Bird):
# 重写Bird类的fly()方法
def fly(self):
print("鸵鸟不会飞")
# 创建Ostrich对象
ostrich = Ostrich()
#调用 Bird 类中的 fly() 方法
Bird.fly(ostrich)
程序运行结果为:
鸟会飞
此程序中,需要大家注意的一点是,使用类名调用其类方法,Python 不会为该方法的第一个 self 参数自定绑定值,因此采用这种调用方法,需要手动为 self 参数赋值。
通过类名调用实例方法的这种方式,又被称为未绑定方法。
13.2.3 父类构造方法调用super()
前面不止一次讲过,Python 中子类会继承父类所有的类属性和类方法。严格来说,类的构造方法其实就是实例方法,因此毫无疑问,父类的构造方法,子类同样会继承。
但我们知道,Python 是一门支持多继承的面向对象编程语言,如果子类继承的多个父类中包含同名的类实例方法,则子类对象在调用该方法时,会优先选择排在最前面的父类中的实例方法。显然,构造方法也是如此。
举个例子:
class People:
def __init__(self,name):
self.name = name
def say(self):
print("我是人,名字为:",self.name)
class Animal:
def __init__(self,food):
self.food = food
def display(self):
print("我是动物,我吃",self.food)
#People中的 name 属性和 say() 会遮蔽 Animal 类中的
class Person(People, Animal):
pass
per = Person("zhangsan")
per.say()
#per.display()
运行结果,结果为:
我是人,名字为: zhangsan
上面程序中,Person 类同时继承 People 和 Animal,其中 People 在前。这意味着,在创建 per 对象时,其将会调用从 People 继承来的构造函数。因此我们看到,上面程序在创建 per 对象的同时,还要给 name 属性进行赋值。
但如果去掉最后一行的注释,运行此行代码,Python 解释器会报如下错误:
Traceback (most recent call last):
File "D:\python3.6\Demo.py", line 18, in <module>
per.display()
File "D:\python3.6\Demo.py", line 11, in display
print("我是动物,我吃",self.food)
AttributeError: 'Person' object has no attribute 'food'
这是因为,从 Animal 类中继承的 display() 方法中,需要用到 food 属性的值,但由于 People 类的构造方法“遮蔽”了Animal 类的构造方法,使得在创建 per 对象时,Animal 类的构造方法未得到执行,所以程序出错。
反过来也是如此,如果将第 13 行代码改为如下形式:
class Person(Animal, People)
则在创建 per 对象时,会给 food 属性传值。这意味着,per.display() 能顺序执行,但 per.say() 将会报错。
针对这种情况,正确的做法是定义 Person 类自己的构造方法(等同于重写第一个直接父类的构造方法)。但需要注意,如果在子类中定义构造方法,则必须在该方法中调用父类的构造方法。
在子类中的构造方法中,调用父类构造方法的方式有 2 种,分别是:
- 类可以看做一个独立空间,在类的外部调用其中的实例方法,可以向调用普通函数那样,只不过需要额外备注类名(此方式又称为未绑定方法);
- 使用 super() 函数。但如果涉及多继承,该函数只能调用第一个直接父类的构造方法。
也就是说,涉及到多继承时,在子类构造函数中,调用第一个父类构造方法的方式有以上 2 种,而调用其它父类构造方法的方式只能使用未绑定方法。
值得一提的是,Python 2.x 中,super() 函数的使用语法格式如下:
super(Class, obj).__init__(self,...)
其中,Class 值是子类的类名,obj 通常指的就是 self
但在 Python 3.x 中,super() 函数有一种更简单的语法格式,推荐大家使用这种格式:
super().__init__(self,...)
在掌握 super() 函数用法的基础上,我们可以尝试修改上面的程序:
class People:
def __init__(self,name):
self.name = name
def say(self):
print("我是人,名字为:",self.name)
class Animal:
def __init__(self,food):
self.food = food
def display(self):
print("我是动物,我吃",self.food)
class Person(People, Animal):
#自定义构造方法
def __init__(self,name,food):
#调用 People 类的构造方法
super().__init__(name)
#super(Person,self).__init__(name) #执行效果和上一行相同
#People.__init__(self,name)#使用未绑定方法调用 People 类构造方法
#调用其它父类的构造方法,需手动给 self 传值
Animal.__init__(self,food)
per = Person("zhangsan","熟食")
per.say()
per.display()
运行结果为:
我是人,名字为: zhangsan
我是动物,我吃 熟食
可以看到,Person 类自定义的构造方法中,调用 People 类构造方法,可以使用 super() 函数,也可以使用未绑定方法。但是调用 Animal 类的构造方法,只能使用未绑定方法。
13.2.4 限制类实例动态添加属性和方法__slots__属性
通过学习《Python类变量和实例变量》一节,了解了如何动态的为单个实例对象添加属性,甚至如果必要的话,还可以为所有的类实例对象统一添加属性(通过给类添加属性)。
那么,Python 是否也允许动态地为类或实例对象添加方法呢?答案是肯定的。我们知道,类方法又可细分为实例方法、静态方法和类方法,Python 语言允许为类动态地添加这 3 种方法;但对于实例对象,则只允许动态地添加实例方法,不能添加类方法和静态方法。
为单个实例对象添加方法,不会影响该类的其它实例对象;而如果为类动态地添加方法,则所有的实例对象都可以使用。
举个例子:
class CLanguage:
pass
#下面定义了一个实例方法
def info(self):
print("正在调用实例方法")
#下面定义了一个类方法
@classmethod
def info2(cls):
print("正在调用类方法")
#下面定义个静态方法
@staticmethod
def info3():
print("正在调用静态方法")
#类可以动态添加以上 3 种方法,会影响所有实例对象
CLanguage.info = info
CLanguage.info2 = info2
CLanguage.info3 = info3
clang = CLanguage()
#如今,clang 具有以上 3 种方法
clang.info()
clang.info2()
clang.info3()
#类实例对象只能动态添加实例方法,不会影响其它实例对象
clang1 = CLanguage()
clang1.info = info
#必须手动为 self 传值
clang1.info(clang1)
程序输出结果为:
正在调用实例方法
正在调用类方法
正在调用静态方法
正在调用实例方法
显然,动态给类或者实例对象添加属性或方法,是非常灵活的。但与此同时,如果胡乱地使用,也会给程序带来一定的隐患,即程序中已经定义好的类,如果不做任何限制,是可以做动态的修改的。
庆幸的是,Python 提供了 slots 属性,通过它可以避免用户频繁的给实例对象动态地添加属性或方法。
再次声明,slots 只能限制为实例对象动态添加属性和方法,而无法限制动态地为类添加属性和方法。
slots 属性值其实就是一个元组,只有其中指定的元素,才可以作为动态添加的属性或者方法的名称。举个例子:
class CLanguage:
__slots__ = ('name','add','info')
可以看到, CLanguage 类中指定了 slots 属性,这意味着,该类的实例对象仅限于动态添加 name、add、info 这 3 个属性以及 name()、add() 和 info() 这 3 个方法。
注意,对于动态添加的方法,slots 限制的是其方法名,并不限制参数的个数。
比如,在 CLanguage 类的基础上,添加如下代码并运行:
def info(self,name):
print("正在调用实例方法",self.name)
clang = CLanguage()
clang.name = "python学习"
#为 clang 对象动态添加 info 实例方法
clang.info = info
clang.info(clang,"Python教程")
程序运行结果为:
正在调用实例方法 python学习
还是在 CLanguage 类的基础上,添加如下代码并运行:
def info(self,name):
print("正在调用实例方法",self.name)
clang = CLanguage()
clang.name = "python学习"
clang.say = info
clang.say(clang,"Python教程")
运行程序,显示如下信息:
Traceback (most recent call last):
File "D:\python3.6\1.py", line 9, in <module>
clang.say = info
AttributeError: 'CLanguage' object has no attribute 'say'
显然,根据 slots 属性的设置,CLanguage 类的实例对象是不能动态添加以 say 为名称的方法的。
另外本节前面提到,slots 属性限制的对象是类的实例对象,而不是类,因此下面的代码是合法的:
def info(self):
print("正在调用实例方法")
CLanguage.say = info
clang = CLanguage()
clang.say()
程序运行结果为:
正在调用实例方法
当然,还可以为类动态添加类方法和静态方法,这里不再给出具体实例,读者可自行编写代码尝试。
此外,slots 属性对由该类派生出来的子类,也是不起作用的。例如如下代码:
class CLanguage:
__slots__ = ('name','add','info')
#Clanguage 的空子类
class CLangs(CLanguage):
pass
#定义的实例方法
def info(self):
print("正在调用实例方法")
clang = CLangs()
#为子类对象动态添加 say() 方法
clang.say = info
clang.say(clang)
运行结果为:
正在调用实例方法
显然,slots 属性只对当前所在的类起限制作用。
因此,如果子类也要限制外界为其实例对象动态地添加属性和方法,必须在子类中设置 slots 属性。
注意,如果为子类也设置有 slots 属性,那么子类实例对象允许动态添加的属性和方法,是子类中 slots 属性和父类 slots 属性的和。
13.3 类的多态
在面向对象程序设计中,除了封装和继承特性外,多态也是一个非常重要的特性,本节就带领大家详细了解什么是多态。
我们都知道,Python 是弱类型语言,其最明显的特征是在使用变量时,无需为其指定具体的数据类型。这会导致一种情况,即同一变量可能会被先后赋值不同的类对象,例如:
class CLanguage:
def say(self):
print("赋值的是 CLanguage 类的实例对象")
class CPython:
def say(self):
print("赋值的是 CPython 类的实例对象")
a = CLanguage()
a.say()
a = CPython()
a.say()
运行结果为:
赋值的是 CLanguage 类的实例对象
赋值的是 CPython 类的实例对象
可以看到,a 可以被先后赋值为 CLanguage 类和 CPython 类的对象,但这并不是多态。类的多态特性,还要满足以下 2 个前提条件:
继承:多态一定是发生在子类和父类之间;
重写:子类重写了父类的方法。
下面程序是对上面代码的改写:
class CLanguage:
def say(self):
print("调用的是 Clanguage 类的say方法")
class CPython(CLanguage):
def say(self):
print("调用的是 CPython 类的say方法")
class CLinux(CLanguage):
def say(self):
print("调用的是 CLinux 类的say方法")
a = CLanguage()
a.say()
a = CPython()
a.say()
a = CLinux()
a.say()
程序执行结果为:
调用的是 Clanguage 类的say方法
调用的是 CPython 类的say方法
调用的是 CLinux 类的say方法
可以看到,CPython 和 CLinux 都继承自 CLanguage 类,且各自都重写了父类的 say() 方法。从运行结果可以看出,同一变量 a 在执行同一个 say() 方法时,由于 a 实际表示不同的类实例对象,因此 a.say() 调用的并不是同一个类中的 say() 方法,这就是多态。
但是,仅仅学到这里,读者还无法领略 Python 类使用多态特性的精髓。其实,Python 在多态的基础上,衍生出了一种更灵活的编程机制。
继续对上面的程序进行改写:
class WhoSay:
def say(self,who):
who.say()
class CLanguage:
def say(self):
print("调用的是 Clanguage 类的say方法")
class CPython(CLanguage):
def say(self):
print("调用的是 CPython 类的say方法")
class CLinux(CLanguage):
def say(self):
print("调用的是 CLinux 类的say方法")
a = WhoSay()
#调用 CLanguage 类的 say() 方法
a.say(CLanguage())
#调用 CPython 类的 say() 方法
a.say(CPython())
#调用 CLinux 类的 say() 方法
a.say(CLinux())
程序执行结果为:
调用的是 Clanguage 类的say方法
调用的是 CPython 类的say方法
调用的是 CLinux 类的say方法
此程序中,通过给 WhoSay 类中的 say() 函数添加一个 who 参数,其内部利用传入的 who 调用 say() 方法。这意味着,当调用 WhoSay 类中的 say() 方法时,我们传给 who 参数的是哪个类的实例对象,它就会调用那个类中的 say() 方法。
在其它教程中,Python 这种由多态衍生出的更灵活的编程机制,又称为“鸭子模型”或“鸭子类型”。